
Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006   27

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is 
prohibited.

ABSTRACT

Source code management repositories of large, long-lived libre (free, open source) software 
projects can be a source of valuable data about the organizational structure, evolution, and 
knowledge exchange in the corresponding development communities. Unfortunately, the sheer 
volume of the available information renders it almost unusable without applying methodologies 
which highlight the relevant information for a given aspect of the project. Such methodology 
is proposed in this article, based on well known concepts from the social networks analysis 
field, which can be used to study the relationships among developers and how they collaborate 
in different parts of a project. It is also applied to data mined from some well known projects 
(Apache, GNOME, and KDE), focusing on the characterization of their collaboration network 
architecture. These cases help to understand the potentials of the methodology and how it is 
applied, but also shows some relevant results which open new paths in the understanding of the 
informal organization of libre software development communities.

Keywords: community-driven development; mining software repositories; social networks 
analysis; software understanding 
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INTRODUCTION
Software projects are usually the collective 

work of many developers. In most cases, and 
especially in the case of large projects, those 
developers are formally organized in a well 
defined (usually hierarchical) structure, with 
clear guidelines about how to interact with each 

other, and the procedures and channels to use. 
Each team of developers is assigned certain 
modules of the project, and only in rare cases do 
they work outside that realm. However, this is 
usually not the case with libre software1 projects, 
where only loose (if any) formal structures are 
acknowledged. On the contrary, libre software 
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developers usually have access to any part of the 
software, and even in the case of large projects, 
they can move freely to a certain extent from 
one module to other, with only some restric-
tions imposed by common usage in the project 
and the rules on which developers themselves 
have agreed to.

In fact, during the late 1990s some voices 
started to claim that the success of some libre 
software projects was rooted in this different 
way of organization, which was referred to as 
the “bazaar development model,” described by 
Eric Raymond (1997) and later complemented 
by some more formal models of nonhierarchical 
coordination (Elliott & Scacchi, 2004; Healy & 
Schussman, 2003). Some empirical studies have 
found that many libre software projects cannot 
follow this bazaar-style model, since they are 
composed of just one or two developers (Healy 
& Schussman, 2003; Krishnamurthy, 2002), but 
the idea remains valid for large projects, with 
tens or even hundreds of developers, where coor-
dination is obviously achieved, but (usually) not 
by using formal procedures. These latter cases 
have gained much attention from the software 
engineering community during the last years, in 
part because despite apparently breaking some 
traditional premises (hard-to-find requirement 
studies, apparently no internal structure, global 
software development, etc.) final products of 
reasonable quality are being delivered. Large 
libre software projects are also suspicious of 
breaking one of the traditional software evolu-
tion laws, showing linear or even superlinear 
growth even after reaching a size of several 
millions of lines of code (Godfrey & Tu, 2000; 
Robles, Amor, Gonzalez-Barahona, & Herraiz, 
2005a). The laws of software evolution state 
that the evolution of a system is a self-regulat-
ing process that maintains its organizational 
stability. Thus, unless feedback mechanisms 
are appropriately introduced, the effective 
global activity tends to remain constant, and 
incremental growth declines. The fact that 
several studies on some large libre software 
projects show evidence that some of these laws 
are disobeyed may be indicative of an efficient 
organizational structure.

On the other hand, the study of several 
large libre software projects has shown evidence 
about the unequal distribution of the contribu-
tions of developers (Dinh-Trong & Bieman, 
2005; Koch & Schneider, 2002; Mockus, 
Fielding, & Herbsleb, 2002). These studies 
have identified roles within the development 
community, and have discovered that a large 
fraction of the development work is done by 
a small group of about 15 persons, which has 
been called the “core” group. The number of 
developers is around one order of magnitude 
larger, and the number of occasional bug re-
porters is again about one order of magnitude 
larger than that of developers (Dinh-Trong & 
Bieman, 2005; Mockus et al., 2002). This is 
what has been called the onion structure of 
libre software projects (Crowston, Scozzi, & 
Buonocore, 2003). In this direction, it has also 
been suggested that large projects need to adopt 
policies to divide the work, giving rise to smaller, 
clearly defined projects (Mockus et al., 2002). 
This trend can be observed in the organization 
of the CVS2 repository of really large libre 
software projects, where the code base is split 
into modules with their own maintainers, goals, 
and so forth. Modules are usually supposed to 
be built maintaining the interrelationships to 
a minimum, so that independent evolution is 
possible (Germán, 2004).

In this article, a new approach is explored 
in order to study the informal structure and 
organization of the developers in large libre 
software projects. It is based on the applica-
tion of well known social networks analysis 
(SNA) techniques to development data obtained 
from the versioning system (CVS). According 
to the classical Conway’s law, organizations 
designing systems are constrained to produce 
designs which are copies of their communication 
structures (Conway, 1968). Following this line 
of reasoning, the relationships among modules 
will be studied, and the dual case of those among 
developers. Our target is the advancement of 
the knowledge about the informal coordination 
structures that are the key to understanding how 
these large libre software projects can work in 
the apparent absence of formalized structures, 
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and where the limits are of those ways of co-
ordinating and exchanging information. We 
have designed a methodology following this 
approach, and have also applied it to some 
well known projects. Although the aim of our 
approach is mainly descriptive, not proposing 
novel models for project evolution or agent be-
havior, just trying to describe in as much detail 
as possible the organizational structure of libre 
software projects, our work is illustrative of the 
power of the SNA techniques. To attain this 
goal, our approach is similar to that presented 
in Madey, Freeh, and Tynan (2002) and Xu, 
Gao, Christley, and Madey (2005): we consider 
libre software projects as complex systems 
and characterize them by using mathematical 
formalisms. As a result, some interesting facts 
related to the organizational structure of libre 
software projects have been uncovered.

The remainder of this article is organized 
as follows. The next section contains a basic 
introduction to SNA, and how we pretend to 
apply its techniques to the study of libre software 
projects based on the data available in their CVS 
repositories. The third section specifies in detail 
the methodology for such a study, followed by 
the fourth section with a brief introduction to 
a set of classical social network analysis pa-
rameters. After that, the fifth section presents 
the main characteristics of the networks cor-
responding to the three projects used as case 
examples: Apache, GNOME, and KDE. This 
serves as an introduction to the more detailed 
comments on several aspects of those projects, 
presented in the sixth, seventh, eighth, ninth, 
and tenth sections. The final section offers some 
conclusions, comments on some related work, 
and discusses further lines of research.

APPLICATION OF SNA TO 
LIBRE SOFTWARE PROJECTS

The study and characterization of complex 
systems is a fruitful research area, with many 
interesting open problems. Special attention has 
been paid recently to complex networks, where 
graph and network analysis play an important 
role. This approach is gaining popularity due 
to its intrinsic power to reduce a system to 

its single components and relationships. Net-
work characterization is widely used in many 
scientific and technological disciplines, such 
as neurobiology (Watts & Strogatz, 1998), 
computer networks (Albert, Barabási, Jeong, & 
Bianconi, 2000), or linguistics (Kumar, Ragha-
van, Rajagopalan, & Tomkins, 2002).

Although some voices argue that the 
software development process found in libre 
software projects is hardly to be considered as 
a new development paradigm (Fuggetta, 2003); 
without doubt, the way it handles its human 
resources differs completely from traditional 
organizations (Germán, 2004). In both cases, 
traditional and libre software environments, 
the human factor is of key importance for the 
development process and how the software 
evolves (Gîrba, Kuhn, Seeberger, & Ducasse, 
2005), but the volunteer nature of many 
contributors in the libre software case makes 
it a clearly differentiated situation (Robles, 
González-Barahona, & Michlmayr, 2005b).

Previous research on this topic has both 
attended to technical and organizational points 
of view. Germán used data from a versioning 
repository in time to determine feature-add-
ing and bug-correcting phases. He also found 
evidence for developer territoriality (software 
artifacts that are mainly, if not uniquely, touched 
by a single developer) (Germán, 2004). 

The intention of other papers has been to 
uncover the social structure of the underlying 
community. The first efforts in the libre software 
world are due to Madey et al. (2002), who took 
data from the largest libre software projects 
repository, SourceForge.net, and inferred re-
lationships among developers that contributed 
to projects in common. A statistical analysis 
of some basic social network parameters can 
also be found by López, Gonzalez-Barahona, 
and Robles (2004) for some large libre soft-
ware projects. Xu et al. (2005) have presented 
a more profound topological analysis of the 
libre software community, joining in the same 
work characteristics from previous papers: 
data based on the SourceForge platform and 
a statistical analysis of some parameters with 
the goal of gaining knowledge on the topology 
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of the libre software phenomenon. This has 
also been the intention of González-Barahona, 
López-Fernández, and Robles (2004), where a 
structure-finding algorithm was used to obtain 
the evolution in time of the organization of 
the Apache project. Wagstrom, Herbsleb, and 
Carley (2005) propose to use the knowledge 
acquired from analyzing libre software projects 
with SNA for the creation of models that help 
understand the underlying social and technical 
process.

METHODOLOGY
The first problem to solve when using 

SNA is getting the information to construct 
the network to analyze. One especially in-
teresting kind of data sources is the records 
maintained by many computer-based systems. 
For instance, Guimera, Danon, Diaz-Guilera, 
Giralt, and Arenas (2003) analyze informal 
networking on organizations using tracks of 
e-mail exchanges. Therefore, from the many 
kinds of records available about the activity 
of a libre software project, those provided by 
the CVS system where source code is stored 
have been the ones chosen. Those records offer 
information about who modified the code, and 
when and how, in many cases from the very 
beginning of the project, in some cases over a 
total period of time above 10 years.

The information in the CVS repository of a 
project includes an accurate and detailed picture 
of the organizational structure of the software, 
and of the developers working on it. When two 
developers work on the same project module, 
they have to exchange (directly or maybe indi-
rectly) information and knowledge to coordinate 
their actions and produce a working result. It 
seems reasonable to assume that the higher 
their contributions to the module, the higher the 
strength of their informal connection.

Based on this assumption, a specific kind 
of social network has been considered, those 
called affiliation networks. They are character-
ized by showing two types of vertices: actors 
and groups. When the network is represented 
with actors as vertices, each one is usually 
associated with a particular person, and two 

of them are linked together when they belong 
to the same group. When the network is rep-
resented with groups as vertices, two groups 
are connected when there is, at least, one actor 
belonging, at the same time, to both groups. In 
our case, actors will be identified as developers, 
and groups as software modules. The “belong 
to” relationship will be in fact “has contributed 
to.” This approach will result in a dual view 
of the same organization: as a network of 
modules linked by common developers, and 
as a network of developers linked by common 
modules. Similar approaches have been used for 
analyzing other complex organizations, like the 
network of scientific authors (Newman, 2001a, 
b) or the network of movie actors (Albert & 
Barabasi, 2002).

To finish the characterization of our net-
works, weighted edges are being considered. 
This means that it is not only taken into account 
whether a node has some relationship with any 
other, but also the strength of that relationship. 
In our case, the weight will be related to the size 
of contributions to common modules (in the case 
of developers) and to the size of contributions 
by common developers (in the case of modules). 
It should be noted that from the methodologi-
cal point of view, the use of weights is a major 
contribution of this article in comparison with 
previous works describing SNA techniques 
applied to libre software (Madey et al., 2002; 
Wagstrom et al., 2005; Xu et al., 2005). As we 
will see in this article, the use of weights is 
indicated as the distribution of work follows 
a very unequal distribution, in the range of a 
Pareto distribution3 (Ghosh & Prakash, 2000). 
Our assumption at this point is that considering a 
link between two major contributing developers 
that equals the one between two random chosen 
developers, introducing an important bias in 
the results regarding the distribution of work 
observed in libre software environments.

Once we have identified how we want 
to use SNA for libre software projects, a well 
defined methodology is proposed in order to 
apply those ideas to any libre software with a 
public CVS repository. The process begins by 
downloading the relevant information from the 
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CVS repository.4 This information includes, for 
each commit (modification in a file in the reposi-
tory): the date, the identifier of the developer 
(commiter), and the number of lines involved. 
Using all those records, the following networks 
are defined for characterizing the organization 
of the project:

• Modules network. Each vertex repre-
sents a particular software module (usu-
ally a directory in the CVS repository) 
of the project. Two modules are linked 
together by an edge when there is at least 
one commiter who has contributed to 
both. Those edges are weighted using a 
degree of relationship between the two 
modules, defined as the total number of 
commits performed by common com-
miters.

• Commiters network. In this case, each 
vertex represents a particular commiter 
(developer). Two commiters are linked by 
an edge when they have contributed to at 
least one common module. Again, edges 
are weighted by a degree of relationship 
defined as the total number of commits 
performed by both developers on modules 
to which both have contributed. 

The definition being used for the degree 
of relationship is an attempt to measure the 
closeness of two vertices. The higher this pa-
rameter, the stronger the relationship between 
those vertices. In this sense, cost of relationship 
between any two vertices can also be defined 
as the inverse of their degree of relationship. 
In this sense, the cost of relationship defines a 
distance between vertices: the higher it is, the 
more difficult it is to reach one of them from 
the other. More formally, given a (connected) 
graph G and a pair of vertices i and j, we define 
the distance between them as dij=∑ e∈Pscr , where 
e are all the edges in the shortest path Ps from 
i to j, and cr is the cost of relationship of any 
of those edges.

Parameters
Once the networks are constructed based 

on the previous definitions, and the degrees 
and costs of relationship have been calculated 
for linked nodes, standard SNA concepts can 
be applied in order to define the following 
parameters of the network (the interpretation 
of the main implications of each parameter is 
also offered):

• Degree. The degree, k, of a vertex is the 
number of edges connected to it. In SNA, 
this parameter reflects the popularity of 
a vertex, in the sense that most popular 
vertices are those maintaining the highest 
number of relationships. More revealing 
than the degree of single vertices is the 
distribution degree of the network (the 
probability of a vertex having a given 
degree). This is one of the most relevant 
characterizations because it provides 
essential information to understand the 
topology of a network (and if longitudi-
nal data is available, the evolution of the 
topology). For example, it is well known 
that a random network follows a Poisson’s 
distribution, while a network following 
a preferential attachment growth model 
presents a power law distribution (Albert 
& Barabasi, 2002). In our context, the 
degree of a commiter corresponds to 
the number of other commiters sharing 
modules with that committer, while the 
degree of a module is the total number 
of modules with which it shares develop-
ers.

• Weighted degree. When dealing with 
weighted networks, the degree of a ver-
tex may be tricky. A vertex with a high 
degree is not necessarily well connected 
to the network because all its edges may 
be weak. On the other hand, a low de-
gree vertex may be strongly attached to 
the network if its entire links are heavy. 
For this reason the weighted degree of 
a vertex, w, is defined as the sum of the 
weights of all the edges connected to it. 
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The weighted degree of a vertex can be 
interpreted as the maximum capacity 
to receive information of that vertex. It 
is also related to the effort spent by the 
vertex in maintaining its relationships.

• Clustering coefficient (Watts & Strogatz, 
1998). The clustering coefficient, c, of 
a vertex measures the transitivity of a 
network. Given a vertex v in a graph G, 
it can be defined as the probability that 
any two neighbors of v are connected (the 
neighbors of v are those vertices directly 
connected to v). Hence 

 c(v)=
2E(v)

kv  (kv-1)    (1)
 
 where kv is the number of neighbors of kv 

and E(v) is the number of edges between 
them. The intuitive interpretation of the 
clustering coefficient is somehow subtle. 
If the total number of neighbors of v is kv, 
the maximum number of edges than can 
exist within that neighborhood is kv (kv  
-1)/2 . Hence, the clustering coefficient 
represents the fraction of the number of 
edges that really are in a neighborhood. 
Therefore it can be considered as a 
measurement of the tendency of a given 
vertex to promote relationships among its 
neighbors. In a completely random graph, 
the clustering coefficient is low, because 
the probability of any two vertices being 
connected is the same, independently on 
them sharing a common neighbor. On the 
other hand, it has been shown that most 
social networks present significantly high 
clustering coefficients (for instance, the 
probability of two persons being friends 
is not independent from the fact that 
they share a common friend) (Albert & 
Barabasi, 2002; Watts, 2003).

 From an organizational point of view, the 
clustering coefficient helps to identify hot 
spots of knowledge exchange on dynamic 
networks. When this parameter is high 
for a vertex, that vertex is promoting its 
neighbors to interact with each other. 
Somehow it is fostering connections 

among its neighborhood. High clustering 
coefficients in networks are indicative for 
cliques. Besides, the clustering coefficient 
is also a measurement of the redundancy 
of the communication links around a 
vertex.

• Weighted clustering coefficient (Latora 
& Marchiori, 2003). The clustering coef-
ficient does not consider the weight of 
edges. We may refine it by introducing 
the weighted clustering coefficient, cw, of 
a vertex, which is an attempt to general-
ize the concept of clustering coefficient 
to weighted networks. Given a vertex v 
in a weighted graph G it can be defined 
as: 

 cw(v)= ∑
i≠j∈NG(v)

wij 
1

kv(kv-1)
 (2)

 
 where NG(v) is the neighborhood of v in 

G (the subgraph of all vertices connected 
to v), wij is the degree of relationship of 
the link between neighbor i and neighbor 
j (wij=0 if there are no links), and kv is 
the number of neighbors. The weighted 
clustering coefficient can be interpreted 
as a measurement of the local efficiency 
of the network around a particular ver-
tex, because vertices promoting strong 
interactions among their neighbors will 
have high values for this parameter. It 
can also be seen as a measurement of 
the redundancy of interactions around a 
vertex.

• Distance centrality (Sabidussi, 1996). 
The distance centrality of a vertex, Dc, 
is a measurement of its proximity to the 
rest. It is sometimes called closeness 
centrality as the higher its value the closer 
that vertex is (on average) to the others. 
Given a vertex v and a graph G, it can be 
defined as: 

 Dc(v)= 1
∑ t∈G dG(v,t)  (3)
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 where dG(v,t)  is the minimum distance 
from vertex v to vertex t (i.e., the sum of 
the costs of relationship of all edges in 
the shortest path from v to t). The distance 
centrality can be interpreted as a mea-
surement of the influence of a vertex in 
a graph because the higher its value, the 
easier for that vertex to spread information 
through that network. Observe that when 
a given vertex is “far” from the others, it 
has a low degree of relationship (i.e., a 
high cost of relationship) with the rest. 
So, the term ∑t∈GdG(v.t)  will increase, 
meaning that it does not occupy a central 
position in the network. In that case, the 
distance centrality will be low.

 Research has shown that employees 
who are central in networks learn faster, 
perform better, and are more committed 
to the organization. These employees are 
also less likely to turn over. Besides, from 
the point of view of information propaga-
tion, vertices with high centrality are like 
“hills” on the plain, in the sense that any 
knowledge is put on them is rapidly seen 
by the rest and spreads easily to the rest 
of the organization.

• Betweenness centrality (Anthonisse, 
1971; Freeman, 1977). The betweenness 
centrality of a vertex, c, is a measurement 
of the number of shortest paths traversing 
that particular vertex. Given a vertex v 
and a graph G, it can be defined as: 

 Bc(v)= ∑
s≠v≠t≠G

σst(v)
σst

  (4)

 where σst(v) is the number of shortest paths 
from s to t going through v, and σst is the 
total number of shortest paths between 
s and t. The betweenness centrality of a 
vertex can be interpreted as a measure-
ment of the information control that it 
can perform on a graph, in the sense that 
vertices with a high value are intermediate 
nodes for the communication of the rest. In 
our context, given that we have weighted 
networks, multiple shortest paths between 
any pair of vertices are highly improbable. 

So, the term σst(v) /σst takes usually only 
two values: 1, if the shortest path between 
s and t goes through v, or 0 otherwise. 
So, the betweenness centrality is just a 
measurement of the number of shortest 
paths traversing a given vertex.

 In the SNA literature vertices with high 
betweenness centrality are known to cover 
“structural holes.” That is, those vertices 
glue together parts of the organization that 
would be otherwise far away from each 
other. They receive a diverse combina-
tion of information available to no one 
else in the network and have therefore a 
higher probability of being involved in 
the knowledge generation processes.

High values of the clustering coefficient 
are usually a symptom of small world behavior. 
The small world behavior of a network can be 
analyzed by comparing it with an equivalent (in 
number of vertices and edges) random network. 
When a network has a diameter (or average 
distance among vertices) similar to its random 
counterpart but, at the same time, has a higher 
average clustering coefficient, it is defined as 
a small world. It is well known (Watts, 2003) 
that small world networks are those optimiz-
ing the short and long term information flow 
efficiency. Those networks are also especially 
well adapted to solve the problem of searching 
knowledge through their vertices.

Table 1 summarizes the various SNA 
parameters that have been presented in this 
section, their meanings, and the information 
they provide. These parameters, and their dis-
tributions and correlations will characterize the 
corresponding networks. From their study, a lot 
can be learned about the underlying organization 
and structure that those networks capture. An 
attempt to illustrate this is found in the follow-
ing sections by studying several cases on real 
libre software projects.

CASE STUDIES: APACHE, KDE, 
AND GNOME

Apache,5 KDE, and GNOME are all well 
known libre software projects, large in size (each 
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one well above the million of lines of code), 
in which several subprojects (modules) can be 
identified. They have already been studied from 
several points of view (Germán, 2004; Koch & 
Schneider, 2002; Mockus et al., 2002). Here, 
they will be used to show some of the features 
of our proposed methodology for applying SNA 
to software projects.

The use of versioning systems is fortu-
nately the case for most large libre software 
projects. Some approaches on how to gather 
information from versioning repositories, in 
particular CVS (Germán, 2004; Germán & 
Hindle, 2005; Zimmermann & Weißgerber, 
2004; Zimmermann, Weißgerber, Diehl & 
Zeller, 2005), have been presented, and are used 
in this study. Therefore, focus is set on what to 
do once that information is available, and not 
on how to gather it.

Tables 2 and 3 summarize the main param-
eters of both. In the case of commiter networks 
the GNOME case has been omitted.

By comparing the data in both tables some 
interesting conclusions can already be drawn. 
It may be observed, for instance, that the aver-
age number of commiters per module is greater 
in KDE (12.5) than in Apache (4.3), meaning 
more people being involved in the average KDE 
subproject. It can also be highlighted that the 
average degree on the commiters networks is 
in general larger than in the modules ones. This 
is especially true for KDE, which rises from 
a value of 21.4 in the latter case to 225 in the 
former. In the case of Apache it only raises from 
14.2 to 31.1. Therefore, we can conclude that in 
those cases, commiters are much more linked 
than modules. The percentage of modules linked 
gives an idea of the synergy (in form of shar-

Table 1. Summary of the SNA parameters described in this article, their meaning and their 
interpretation

Parameter Meaning Interpretation

Degree of relationship Common activity among two entities 
(measured in commits) How strong the relationship is

Cost of relationship Inverse of the degree of relationship Gives the cost of reaching one vertex from 
the other

Degree Number of vertices connected to a node Popularity of a vertex

Distribution degree Probability of a vertex having a given 
degree

Topology of the network (Poisson or power 
law distributions)

Weighted degree Degree considering weights of the links 
among vertices

Maximum capacity to receive information for a 
vertex. Effort in maintaining the relationships

Clustering coefficient
Fraction of the total number of edges 
that could exist for a given vertex that 
really exist

Transitivity of a network: tendency of a vertex 
to promote relationships among its neighbors. 
Helps identifying hot spots of knowledge 
interchange in dynamic networks

Weigh ted  c lus te r ing 
coefficient

Generalization of the clustering coefficient 
concept to weighted networks

Local efficiency of the network around a vertex. 
Redundancy of interactions around a vertex

Distance centrality Measurement of the proximity of a vertex 
to the rest

Gives the influence of a vertex in a graph. The 
higher the value the easier it is for the vertex to 
spread information through the network

Betweenness centrality Number of shortest paths traversing a 
vertex

Measurement of the information control. Higher 
values mean that the vertex is an intermediate 
node for the communication of the rest. Vertices 
with high values are known to cover “structural 
holes”

Small world

Diameter (or average distance among 
vertices) similar but higher average 
clustering coefficient than random 
network

Optimizes short and long term information flow 
efficiency. Especially well adapted to solve 
the problem of searching knowledge through 
their vertices



Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006   35

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is 
prohibited.

ing information and experience) in a network 
as many modules have commiters in common. 
It can be assumed that this happens because 
of the technical proximity between modules. 
Regarding our case studies, KDE and GNOME 
show percentages near 30%, while the average 
Apache module is only linked to 8% of the other 
modules in the versioning system. So, Apache is 
specially fragmented in several module families 
that have no commiters in common. KDE and 
GNOME have a higher cohesion, while there 
is more dispersion in Apache.

In the following sections some specific 
aspects of all those networks will be studied, 
with the idea of illustrating both how the meth-
odology is applied and which kind of results 
can be obtained from it.

DEGREE IN THE MODULES 
NETWORK

Table 4 shows that the number of modules 
for Apache (175), KDE (73), and GNOME (667) 
differ significantly. These projects are similar in 
software size (at least in order of magnitude), 
so the number of modules depends mainly on 
the various strategies that the projects follow 
when creating a new module. KDE has a struc-
tured CVS; applications that belong together 

are usually grouped into one module (so, for 
instance, there exists the kdenetwork module 
for many network applications or the koffice 
module for the various office suite programs). 
Apache has modules at the application level. 
Finally, GNOME follows a more chaotic ap-
proach, resulting in many more modules. Almost 
every application, even components (there are 
almost a dozen different GIMP add-ons with 
their own module) can be found to be a module 
in themselves.

The most popular characterization of 
network degree is the distribution degree P(k), 
which measures the probability of a given 
vertex having exactly k edges. However, the 
representation of P(k) in networks of a small 
size like ours is usually messy.6 In these cases, 
the specialized literature prefers to use an 
associated parameter called the cumulative 
distribution degree, CP(k), which is defined 
as CP(k) = ∑k

∞
P(i)  and is usually represented 

in a log-log scale.
Figure 1 shows the cumulative distribu-

tion degree for our three networks. As it can be 
observed, all of them present a sharp cut off, 
which is a symptom of an exponential fall of the 
distribution degree tail. From a practical point 
of view, this means that none of our networks 

Project name Modules (Vertices) Edges Average % of edges (avg)
Apache 175 2491 14.23 8.13
KDE 73 1560 21.37 29.27
GNOME 667 121,134 181.61 27.23

Table 2. Number of vertices and edges of the module networks in the Apache, GNOME, and 
KDE projects

Table 3. Number of vertices and edges of the commiter networks in the Apache and KDE proj-
ects

Project name Commiters 
(Vertices) Edges Commiters per 

module Avg Number of edges

Apache 751 23,324 4.3 31.06
KDE 915 205,877 12.5 225.00
GNOME 869 N/A 1.3 N/A



36   Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. 
is prohibited.

follow a power law distribution. This is quite 
a remarkable finding, because the specialized 
literature has shown that most social networks 
present power laws for this parameter. This 
implies that the growth of the network does 
not follow the traditional random preferential 
attachment law. Thus, it is difficult to come to 
any conclusions at this point; maybe by using 
a weighted network approach, as shown later, 
we could infer more information about the 
network topology.

Starting with the degree of the vertices, 
an analysis of assorts of the networks can also 
be carried out. The assorts measure the aver-
age degree of neighbors of vertices having a 
particular degree. For this reason it can also be 
called the degree-degree distribution.

Figure 2a represents this parameter for 
our networks. As can be observed, all three 
networks are elitist, in the sense that vertices 
tend to connect to other vertices having a 
similar degree (“rich” with “rich” and “poor” 
with “poor”). This is especially clear in the 
case of GNOME, where the curve approaches 
a linear equation with slope 1. Apache project 
deviates slightly from that behavior, showing 

Figure 1. Cumulative degree distribution for Apache ( ), KDE (+), and GNOME (⋅)

some higher degree modules connected to other 
modules of a lower degree.

The previous analysis assumes unweight-
ed networks. If weighted edges are considered 
now, similar conclusions are obtained. Figure 2b 
represents the cumulative weighted distribution 
degree of the networks. Comparing this picture 
with Figure 1, it may be remarked that the sharp 
exponential cut-offs have disappeared. This is 
especially clear in the case of GNOME, where 
the curve tail can be clearly approximated by 
a power law. The interpretation for this find-
ing is that the growth of that network could be 
driven by a preferential attachment law based 
on weighted degrees. This means that the prob-
ability of a new module to establish a link with 
a given vertex is proportional to the weighted 
degree of that vertex. That is, the commiters of 
new modules are, with high probability, com-
miters of modules which are well connected 
(have high weighted degree) in the network. 
It should be noted that the use of weights has 
given a more realistic picture.

From Figure 1, it can be remarked that the 
sharp cut offs for Apache and KDE are close 
to each other. This means that the maximum 
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numbers of relationships in both projects are 
similar. Nevertheless, observing Figure 2b, it 
can be seen that the KDE tail is clearly over 
the Apache tail. This fact implies that KDE 
weighted links are, on average, stronger than 
those of Apache. This can be quantitatively 

verified: we have calculated the average edge 
weight for the three projects obtaining 1,409.27 
for Apache, 11,136.82 for KDE, and 7,661.18 
for GNOME. 

If multiplied, the average edge weight and 
the number of modules, the figures obtained 

Figure 2. Assortativity (degree - degree distribution) for Apache (), KDE (+) and GNOME (⋅). 
Cumulative weighted degree distribution for Apache ( ), KDE (+) and GNOME (⋅)

(a) Assortativity 

(b) Cumulative weighted degree 
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are the total amount of commits performed by 
developers that contribute to at least two mod-
ules: 105,695 for Apache, 812,988 for KDE, 
and 5,110,007 for GNOME. This gives an idea 
of the modularity of the modules as a lower 
number of commits is indicative for developer 
work being more focused on a low number of 
modules. While the figures for Apache are not 
surprising (we have already noticed with previ-
ous parameters that is a high level of structure 
in the Apache project), the difference between 
KDE and GNOME is astonishing. The orga-
nization of the KDE CVS repository yields in 
more independent modules than the ones found 
in the one for GNOME.

CLUSTERING COEFFICIENT 
IN THE MODULES NETWORK

For the analysis of the clustering coef-
ficient, we have represented its distribution in 
Figure 3a.

In Table 4 the average distance <d> among 
vertices are represented, together with the aver-
age clustering coefficients <cc> for our three 
networks and their equivalent random counter-
parts (<rd> is the random average distance and 
<rcc> is the random average clustering coef-
ficient). As can be observed, the three networks 
satisfy the small world condition, since their 
average distances are slightly above those of 
their random counterparts; but the clustering 
coefficients are clearly higher.

As can be observed, the average random 
clustering coefficients for KDE and GNOME 
are very close to the real ones, due to the high 
density of those networks. This could be an 
indication of over-redundancy in their links. 
That would mean that the same efficiency 
of information could be obtained with fewer 
relationships (i.e., eliminating many edges in 
the network without significantly increasing the 
diameter or reducing the clustering coefficient). 
In this sense, the Apache network seems to be 
more optimized. To interpret this fact, the reader 
may remember that links in this network are 
related to the existence of common developers 
for the linked modules. It should be noted that 

redundancy is probably a good characteristic 
of a libre software project as it may lose many 
developers without being affected heavily. It 
may be especially interesting to have over-re-
dundancy in projects with many volunteers, as 
in those environments, turnover may be high. 
Future research should focus on investigating 
whether over-redundancy is a good or bad pa-
rameter in the case of libre software projects. On 
the other side, how much of this redundancy is 
due to the taking of a static picture of the project 
should be researched; it may well be that the 
redundancy we have observed is the result of 
different generations of developers working on 
the same file in different periods of time.

Some interesting conclusions can also be 
obtained by looking at the weighted clustering 
coefficient. In Figure 3b we can observe the 
average weighted clustering coefficient as a 
function of the degree of vertices (the weighted 
degree-degree distribution). As we have already 
noticed, the KDE and GNOME networks have 
a similar local redundancy, which is higher than 
the one of Apache. High redundancy implies 
more fluid information exchanges in the short 
distances for the first two projects. Besides, the 
weighted clustering coefficient lowers with the 
degree in all cases, according to a power law 
function. We can infer that highly connected ver-
tices cannot maintain their neighbors as closely 
related as poorly connected ones. This happens 
typically in most social networks because the 
cost of maintaining close relationships in small 
groups is much lower than the equivalent cost 
for large neighborhoods.

DISTANCE CENTRALITY IN 
THE MODULES NETWORK

The analysis of the distance centrality 
of vertices is relevant because this parameter 
measures how close a vertex is to the rest of 
the network. In Figure 4a, the distance central-
ity distribution for our three networks can be 
observed. They follow multiple power laws, 
making higher values of the parameter most 
probable. This is an indication of well structured 
networks for the fast spread of knowledge and 
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Figure 3. Clustering coefficient distribution for Apache ( ), KDE (+) and GNOME (⋅). Aver-
age weighted clustering coefficient as a function of the degree of vertices for Apache ( ), KDE 
(+) and GNOME (.)

(a) Clustering coefficient distribution 

(b) Average weighted clustering coefficient 

Project name <d> / <rd> <cc> / <rcc>
Apache 2.06 / 1.47 0.73 / 0.19
KDE 1.31 / 1.11 0.88 / 0.65
GNOME 1.46 / 1.10 0.87 / 0.54

Table 4.  Small world analysis for the module networks
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information.
We can also analyze the average distance 

centrality as a function of the degree (average 
distance centrality-degree distribution), which 
is shown if Figure  4b. It can be observed that 
in all three cases the average distance centrality 

grows with the degree following, approximately, 
a power law of low exponent. This means that, 
in terms of distance centrality, the networks are 
quite democratic, because there is not a clear 
advantage of well connected nodes compared 
to the rest. Curiously enough, the Apache and 

Figure 4. Distance centrality distribution for Apache ( ), KDE (+), and GNOME (⋅); Aver-
age distance centrality as a function of the degree of vertices for Apache ( ), KDE (+), and 
GNOME (⋅)

(a) Distance centrality distribution 

(b) Average distance centrality 
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GNOME curves are quite similar, while the 
KDE one is clearly an order of magnitude over 
the rest. This could be an effect of the lower 
size of this network, but is also an indication 
of an especially well structured network in 
terms of information spread. So, even if KDE 
showed to be more modular as has been seen 
for a previous parameter, its structure seems to 
maximize information flow.

BETWEENNESS CENTRALITY 
IN THE MODULES NETWORK

The distance centrality of a vertex indi-
cates how well new knowledge created in a 
vertex spreads to the rest of the network. On 
the other hand, betweenness centrality is a 
measurement of how easy it is for a vertex to 
generate this new information. Vertices with 
high betweenness centrality indexes are the 
crossroads of organizations, where informa-
tion from different origins can be intercepted, 
analyzed, or manipulated. In Figure 5a, the 
betweenness centrality distribution for our three 
networks can be observed. In the same way, this 
was the case for distance centrality, as it grows 
following a multiple power law. Nevertheless, 
there is a significant difference between the 
distributions of these two parameters. Although 
the log-log scale of the axis of Figure 5a does not 
allow visualizing it, the most probable value of 
the betweenness centrality in all three networks 
is zero. Just to show an example, only 102 out 
of 677 vertices of the GNOME network have a 
nonzero betweenness centrality. So, the distance 
centrality is a common good of all members of 
the network, while the betweenness centrality 
is owned by reduced elite. This should not 
be surprising at all, as projects usually have 
modules (i.e., applications) which have a more 
central position and attract more development 
attention. Surrounding these modules, other 
minor modules may appear.

 This fact can also be visualized in Figure 
5b, where we represent the average betweenness 
centrality as a function of the degree. It can be 
clearly seen that only vertices of high degree 
have nonzero betweenness centralities. 

COMMITER NETWORKS
The analysis of commiter networks draw 

similar conclusions to those shown for module 
networks, and therefore they are not going to 
be commented on in detail. For instance, the 
cumulative degree distribution for the two com-
miter networks is shown in Figure 6a, which has 
clearly the same qualitative properties than for 
this parameter for the module networks shown 
in Figure 1. The same holds true for the com-
miter cumulative weighted degree distribution 
depicted in Figure 6b, or for the average degree 
as a function of degree, depicted in Figure 7a, 
where it can be noticed how both networks 
maintain the elitist characteristic also observed 
in the case of modules.

 An interesting feature of commiter net-
works can be seen in Figure 7b. The average 
weighted degree of authors remains more or 
less constant for low values of the degree. 
Nevertheless, in the case of KDE, it increases 
meaningfully for the highest degrees. The impli-
cation is that commiters with higher degrees not 
only have more relationships than the rest, but 
also their relationships are much stronger than 
the average. This indicates that authors having 
higher degrees are more involved in the project 
development and establish stronger links than 
the rest. At the same time, as we observed in 
Figure 7a, they only relate to other commiters 
that are involved in the project to the same 
degree as they are. If this behavior is found in 
other large libre software projects, it could be 
a valid method to identify the leading “core” 
group of a libre software project. On the other 
hand, the Apache project seems to promote a 
single category of developers, given that the 
weighted degree does not depend so clearly 
on the degree of vertices. It may be also that 
because of the fragmentation of the Apache 
project in many families of modules, it is easy 
to developers to reach a point where they do 
not have the possibility to get to know more 
developers.

 Table 5 digs into the small-world proper-
ties of commiter networks. As we can observe, 
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both networks can still considered to be small 
world. The Apache case is especially interest-
ing, because an increase in the average distance 
is observed. This characteristic plus the large 
value of the clustering coefficient may indicate 
that the network is forming cliques.

CONCLUSIONS, LESSONS 
LEARNED, AND FURTHER 

WORK
In this article an approach to the study 

of libre (free, open source) software projects 
has been presented, based on the quantitative 

Figure 5. Betweenness centrality distribution for Apache ( ), KDE (+) and GNOME (⋅). Aver-
age betweenness centrality distribution for Apache ( ), KDE (+) and GNOME (⋅)

(a) Betweenness centrality distribution

(b) Average betweenness centrality distribution 
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and qualitative application of social networks 
analysis to the data retrieved from source code 
management repositories. Since most libre 
software projects maintain such repositories, 
and allow for public read-only access to them, 
this analysis can be repeated for many of them. 
However, given its characteristics, it will be 

most useful for large projects, well above the 
hundreds of thousands of lines of code and 
dozens of developers.

We have designed a detailed methodol-
ogy which applies this SNA-based approach 
to the study of CVS data, and which can be 
automated. It starts by downloading the re-

Figure 6. Cumulative degree distribution for Apache ( ) and KDE (+); Cumulative weighted 
degree distribution for Apache ( ) and KDE (+)

(a) Cumulative degree distribution 

(b) Cumulative weighted degree distribution 
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quired information from CVS, and produces 
as an output several graphs and tables which 
can be interpreted to gain knowledge about the 
informal organization of the studied project. It 
is important to highlight a set of parameters in 

the output that are suitable for characterizing 
several aspects of the organization of the stud-
ied project, which makes it possible to gain a 
lot of insight on how a group of developers is 
managing coordination and information flow 

Figure 7. Degree - degree distribution for Apache ( ) and KDE (+); Average weighted degree 
as a function of the degree for Apache ( ) and KDE (+)

(a) Degree - degree distribution

(b) Average weighted degree as a function of degree 
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within the project. In addition, it has been 
shown that the introduction of weights in the 
relationships gives more realistic information 
about the projects under study.

It has also been shown how our method-
ology is applied to some important and well 
known projects: KDE, Apache, and GNOME. 
Although these studies are sketched just as case 
examples, some relevant results can also be 
extracted from them. For instance, it has been 
shown how all the networks that have been 
studied fulfill the requirements to be a small 
world. This has important consequences on their 
characterization, since small worlds have been 
comprehensively studied and are well under-
stood in many respects. We have also not only 
found that the growth of the studied networks 
cannot be explained by random preference at-
tachment (something that could be previously 
suspected). Moreover, it matches pretty well the 
pattern of preference attachment related to the 
weight (amount of shared effort) of links. Some 
other relevant results are the elitist behavior 
found in these projects with respect to the con-
nectivity of modules and developers, which are 
indicators of an over-redundancy of links, and 
of a good structure for the flow of knowledge, 
and the absence of centers of power (in terms 
of information flux). All of these conclusions 
should be validated by studying more projects, 
and by analyzing with detail their microimpli-
cations before being raised to the category of 
characteristics of libre software projects, but that 
so far are good lines of further research.

There are some other studies applying 
similar techniques to libre software projects. 
For instance, Crowston and Howison (2003) 
suggests that large projects are more modular 
than small ones. However, to our knowledge the 

kind of comprehensive analysis shown in this 
article has never been proposed as a methodol-
ogy for characterizing libre software projects 
and their coordination structure. In fact, after 
using it in the study of some projects, we believe 
that it has a great potential to explore informal 
organizational patterns, and uncovering nonob-
vious relationships and characteristics of their 
underlying structure of coordination.
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1 In this paper the term “libre software” will 
be used to refer to any software licensed 
under terms that are compliant with the 
definition of “free software” by the Free 
Software Foundation, and the definition 
of “open source software” by the Open 
Source Initiative, thus avoiding the con-
troversy between those two terms.

2  Concurrent Version System (CVS) is the 
source code management (also known 
as versioning) system used in most libre 
software projects, although lately a new 
generation of tools, including for instance 
Subversion, are gaining popularity. In 
those projects, the CVS repository is usu-
ally freely readable over the Internet. 

3 A Pareto distribution is known to be given 
when the 20% most active is responsible 
for 80% of the output.

4  For downloading this information we 
have used the CVSAnalY tool described 
in Robles, Koch, and Gonzalez-Barahona 
(2004). 

5 Throughout this article, references to 
Apache cover all projects lead by the 
Apache Foundation and not just the 
HTTPd server, usually known as the 
Apache Web server.

6 Social network analysis has been applied 
to networks with hundreds of thousands, 
sometimes millions of vertices. In this 
sense, our network is of a small size even 
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