
Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006 27

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

ABSTRACT

Source code management repositories of large, long-lived libre (free, open source) software
projects can be a source of valuable data about the organizational structure, evolution, and
knowledge exchange in the corresponding development communities. Unfortunately, the sheer
volume of the available information renders it almost unusable without applying methodologies
which highlight the relevant information for a given aspect of the project. Such methodology
is proposed in this article, based on well known concepts from the social networks analysis
field, which can be used to study the relationships among developers and how they collaborate
in different parts of a project. It is also applied to data mined from some well known projects
(Apache, GNOME, and KDE), focusing on the characterization of their collaboration network
architecture. These cases help to understand the potentials of the methodology and how it is
applied, but also shows some relevant results which open new paths in the understanding of the
informal organization of libre software development communities.

Keywords: community-driven development; mining software repositories; social networks
analysis; software understanding

Applying Social Network Analysis
Techniques to Community-Driven

Libre Software Projects
Luis López-Fernández, Universidad Rey Juan Carlos, Spain

Gregorio Robles, Universidad Rey Juan Carlos, Spain
Jesus M. Gonzalez-Barahona, Universidad Rey Juan Carlos, Spain

Israel Herraiz*, Universidad Rey Juan Carlos, Spain

INTRODUCTION
Software projects are usually the collective

work of many developers. In most cases, and
especially in the case of large projects, those
developers are formally organized in a well
defined (usually hierarchical) structure, with
clear guidelines about how to interact with each

other, and the procedures and channels to use.
Each team of developers is assigned certain
modules of the project, and only in rare cases do
they work outside that realm. However, this is
usually not the case with libre software1 projects,
where only loose (if any) formal structures are
acknowledged. On the contrary, libre software

28 Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

developers usually have access to any part of the
software, and even in the case of large projects,
they can move freely to a certain extent from
one module to other, with only some restric-
tions imposed by common usage in the project
and the rules on which developers themselves
have agreed to.

In fact, during the late 1990s some voices
started to claim that the success of some libre
software projects was rooted in this different
way of organization, which was referred to as
the “bazaar development model,” described by
Eric Raymond (1997) and later complemented
by some more formal models of nonhierarchical
coordination (Elliott & Scacchi, 2004; Healy &
Schussman, 2003). Some empirical studies have
found that many libre software projects cannot
follow this bazaar-style model, since they are
composed of just one or two developers (Healy
& Schussman, 2003; Krishnamurthy, 2002), but
the idea remains valid for large projects, with
tens or even hundreds of developers, where coor-
dination is obviously achieved, but (usually) not
by using formal procedures. These latter cases
have gained much attention from the software
engineering community during the last years, in
part because despite apparently breaking some
traditional premises (hard-to-find requirement
studies, apparently no internal structure, global
software development, etc.) final products of
reasonable quality are being delivered. Large
libre software projects are also suspicious of
breaking one of the traditional software evolu-
tion laws, showing linear or even superlinear
growth even after reaching a size of several
millions of lines of code (Godfrey & Tu, 2000;
Robles, Amor, Gonzalez-Barahona, & Herraiz,
2005a). The laws of software evolution state
that the evolution of a system is a self-regulat-
ing process that maintains its organizational
stability. Thus, unless feedback mechanisms
are appropriately introduced, the effective
global activity tends to remain constant, and
incremental growth declines. The fact that
several studies on some large libre software
projects show evidence that some of these laws
are disobeyed may be indicative of an efficient
organizational structure.

On the other hand, the study of several
large libre software projects has shown evidence
about the unequal distribution of the contribu-
tions of developers (Dinh-Trong & Bieman,
2005; Koch & Schneider, 2002; Mockus,
Fielding, & Herbsleb, 2002). These studies
have identified roles within the development
community, and have discovered that a large
fraction of the development work is done by
a small group of about 15 persons, which has
been called the “core” group. The number of
developers is around one order of magnitude
larger, and the number of occasional bug re-
porters is again about one order of magnitude
larger than that of developers (Dinh-Trong &
Bieman, 2005; Mockus et al., 2002). This is
what has been called the onion structure of
libre software projects (Crowston, Scozzi, &
Buonocore, 2003). In this direction, it has also
been suggested that large projects need to adopt
policies to divide the work, giving rise to smaller,
clearly defined projects (Mockus et al., 2002).
This trend can be observed in the organization
of the CVS2 repository of really large libre
software projects, where the code base is split
into modules with their own maintainers, goals,
and so forth. Modules are usually supposed to
be built maintaining the interrelationships to
a minimum, so that independent evolution is
possible (Germán, 2004).

In this article, a new approach is explored
in order to study the informal structure and
organization of the developers in large libre
software projects. It is based on the applica-
tion of well known social networks analysis
(SNA) techniques to development data obtained
from the versioning system (CVS). According
to the classical Conway’s law, organizations
designing systems are constrained to produce
designs which are copies of their communication
structures (Conway, 1968). Following this line
of reasoning, the relationships among modules
will be studied, and the dual case of those among
developers. Our target is the advancement of
the knowledge about the informal coordination
structures that are the key to understanding how
these large libre software projects can work in
the apparent absence of formalized structures,

Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006 29

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

and where the limits are of those ways of co-
ordinating and exchanging information. We
have designed a methodology following this
approach, and have also applied it to some
well known projects. Although the aim of our
approach is mainly descriptive, not proposing
novel models for project evolution or agent be-
havior, just trying to describe in as much detail
as possible the organizational structure of libre
software projects, our work is illustrative of the
power of the SNA techniques. To attain this
goal, our approach is similar to that presented
in Madey, Freeh, and Tynan (2002) and Xu,
Gao, Christley, and Madey (2005): we consider
libre software projects as complex systems
and characterize them by using mathematical
formalisms. As a result, some interesting facts
related to the organizational structure of libre
software projects have been uncovered.

The remainder of this article is organized
as follows. The next section contains a basic
introduction to SNA, and how we pretend to
apply its techniques to the study of libre software
projects based on the data available in their CVS
repositories. The third section specifies in detail
the methodology for such a study, followed by
the fourth section with a brief introduction to
a set of classical social network analysis pa-
rameters. After that, the fifth section presents
the main characteristics of the networks cor-
responding to the three projects used as case
examples: Apache, GNOME, and KDE. This
serves as an introduction to the more detailed
comments on several aspects of those projects,
presented in the sixth, seventh, eighth, ninth,
and tenth sections. The final section offers some
conclusions, comments on some related work,
and discusses further lines of research.

APPLICATION OF SNA TO
LIBRE SOFTWARE PROJECTS

The study and characterization of complex
systems is a fruitful research area, with many
interesting open problems. Special attention has
been paid recently to complex networks, where
graph and network analysis play an important
role. This approach is gaining popularity due
to its intrinsic power to reduce a system to

its single components and relationships. Net-
work characterization is widely used in many
scientific and technological disciplines, such
as neurobiology (Watts & Strogatz, 1998),
computer networks (Albert, Barabási, Jeong, &
Bianconi, 2000), or linguistics (Kumar, Ragha-
van, Rajagopalan, & Tomkins, 2002).

Although some voices argue that the
software development process found in libre
software projects is hardly to be considered as
a new development paradigm (Fuggetta, 2003);
without doubt, the way it handles its human
resources differs completely from traditional
organizations (Germán, 2004). In both cases,
traditional and libre software environments,
the human factor is of key importance for the
development process and how the software
evolves (Gîrba, Kuhn, Seeberger, & Ducasse,
2005), but the volunteer nature of many
contributors in the libre software case makes
it a clearly differentiated situation (Robles,
González-Barahona, & Michlmayr, 2005b).

Previous research on this topic has both
attended to technical and organizational points
of view. Germán used data from a versioning
repository in time to determine feature-add-
ing and bug-correcting phases. He also found
evidence for developer territoriality (software
artifacts that are mainly, if not uniquely, touched
by a single developer) (Germán, 2004).

The intention of other papers has been to
uncover the social structure of the underlying
community. The first efforts in the libre software
world are due to Madey et al. (2002), who took
data from the largest libre software projects
repository, SourceForge.net, and inferred re-
lationships among developers that contributed
to projects in common. A statistical analysis
of some basic social network parameters can
also be found by López, Gonzalez-Barahona,
and Robles (2004) for some large libre soft-
ware projects. Xu et al. (2005) have presented
a more profound topological analysis of the
libre software community, joining in the same
work characteristics from previous papers:
data based on the SourceForge platform and
a statistical analysis of some parameters with
the goal of gaining knowledge on the topology

30 Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

of the libre software phenomenon. This has
also been the intention of González-Barahona,
López-Fernández, and Robles (2004), where a
structure-finding algorithm was used to obtain
the evolution in time of the organization of
the Apache project. Wagstrom, Herbsleb, and
Carley (2005) propose to use the knowledge
acquired from analyzing libre software projects
with SNA for the creation of models that help
understand the underlying social and technical
process.

METHODOLOGY
The first problem to solve when using

SNA is getting the information to construct
the network to analyze. One especially in-
teresting kind of data sources is the records
maintained by many computer-based systems.
For instance, Guimera, Danon, Diaz-Guilera,
Giralt, and Arenas (2003) analyze informal
networking on organizations using tracks of
e-mail exchanges. Therefore, from the many
kinds of records available about the activity
of a libre software project, those provided by
the CVS system where source code is stored
have been the ones chosen. Those records offer
information about who modified the code, and
when and how, in many cases from the very
beginning of the project, in some cases over a
total period of time above 10 years.

The information in the CVS repository of a
project includes an accurate and detailed picture
of the organizational structure of the software,
and of the developers working on it. When two
developers work on the same project module,
they have to exchange (directly or maybe indi-
rectly) information and knowledge to coordinate
their actions and produce a working result. It
seems reasonable to assume that the higher
their contributions to the module, the higher the
strength of their informal connection.

Based on this assumption, a specific kind
of social network has been considered, those
called affiliation networks. They are character-
ized by showing two types of vertices: actors
and groups. When the network is represented
with actors as vertices, each one is usually
associated with a particular person, and two

of them are linked together when they belong
to the same group. When the network is rep-
resented with groups as vertices, two groups
are connected when there is, at least, one actor
belonging, at the same time, to both groups. In
our case, actors will be identified as developers,
and groups as software modules. The “belong
to” relationship will be in fact “has contributed
to.” This approach will result in a dual view
of the same organization: as a network of
modules linked by common developers, and
as a network of developers linked by common
modules. Similar approaches have been used for
analyzing other complex organizations, like the
network of scientific authors (Newman, 2001a,
b) or the network of movie actors (Albert &
Barabasi, 2002).

To finish the characterization of our net-
works, weighted edges are being considered.
This means that it is not only taken into account
whether a node has some relationship with any
other, but also the strength of that relationship.
In our case, the weight will be related to the size
of contributions to common modules (in the case
of developers) and to the size of contributions
by common developers (in the case of modules).
It should be noted that from the methodologi-
cal point of view, the use of weights is a major
contribution of this article in comparison with
previous works describing SNA techniques
applied to libre software (Madey et al., 2002;
Wagstrom et al., 2005; Xu et al., 2005). As we
will see in this article, the use of weights is
indicated as the distribution of work follows
a very unequal distribution, in the range of a
Pareto distribution3 (Ghosh & Prakash, 2000).
Our assumption at this point is that considering a
link between two major contributing developers
that equals the one between two random chosen
developers, introducing an important bias in
the results regarding the distribution of work
observed in libre software environments.

Once we have identified how we want
to use SNA for libre software projects, a well
defined methodology is proposed in order to
apply those ideas to any libre software with a
public CVS repository. The process begins by
downloading the relevant information from the

Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006 31

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

CVS repository.4 This information includes, for
each commit (modification in a file in the reposi-
tory): the date, the identifier of the developer
(commiter), and the number of lines involved.
Using all those records, the following networks
are defined for characterizing the organization
of the project:

• Modules network. Each vertex repre-
sents a particular software module (usu-
ally a directory in the CVS repository)
of the project. Two modules are linked
together by an edge when there is at least
one commiter who has contributed to
both. Those edges are weighted using a
degree of relationship between the two
modules, defined as the total number of
commits performed by common com-
miters.

• Commiters network. In this case, each
vertex represents a particular commiter
(developer). Two commiters are linked by
an edge when they have contributed to at
least one common module. Again, edges
are weighted by a degree of relationship
defined as the total number of commits
performed by both developers on modules
to which both have contributed.

The definition being used for the degree
of relationship is an attempt to measure the
closeness of two vertices. The higher this pa-
rameter, the stronger the relationship between
those vertices. In this sense, cost of relationship
between any two vertices can also be defined
as the inverse of their degree of relationship.
In this sense, the cost of relationship defines a
distance between vertices: the higher it is, the
more difficult it is to reach one of them from
the other. More formally, given a (connected)
graph G and a pair of vertices i and j, we define
the distance between them as dij=∑ e∈Pscr , where
e are all the edges in the shortest path Ps from
i to j, and cr is the cost of relationship of any
of those edges.

Parameters
Once the networks are constructed based

on the previous definitions, and the degrees
and costs of relationship have been calculated
for linked nodes, standard SNA concepts can
be applied in order to define the following
parameters of the network (the interpretation
of the main implications of each parameter is
also offered):

• Degree. The degree, k, of a vertex is the
number of edges connected to it. In SNA,
this parameter reflects the popularity of
a vertex, in the sense that most popular
vertices are those maintaining the highest
number of relationships. More revealing
than the degree of single vertices is the
distribution degree of the network (the
probability of a vertex having a given
degree). This is one of the most relevant
characterizations because it provides
essential information to understand the
topology of a network (and if longitudi-
nal data is available, the evolution of the
topology). For example, it is well known
that a random network follows a Poisson’s
distribution, while a network following
a preferential attachment growth model
presents a power law distribution (Albert
& Barabasi, 2002). In our context, the
degree of a commiter corresponds to
the number of other commiters sharing
modules with that committer, while the
degree of a module is the total number
of modules with which it shares develop-
ers.

• Weighted degree. When dealing with
weighted networks, the degree of a ver-
tex may be tricky. A vertex with a high
degree is not necessarily well connected
to the network because all its edges may
be weak. On the other hand, a low de-
gree vertex may be strongly attached to
the network if its entire links are heavy.
For this reason the weighted degree of
a vertex, w, is defined as the sum of the
weights of all the edges connected to it.

32 Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

The weighted degree of a vertex can be
interpreted as the maximum capacity
to receive information of that vertex. It
is also related to the effort spent by the
vertex in maintaining its relationships.

• Clustering coefficient (Watts & Strogatz,
1998). The clustering coefficient, c, of
a vertex measures the transitivity of a
network. Given a vertex v in a graph G,
it can be defined as the probability that
any two neighbors of v are connected (the
neighbors of v are those vertices directly
connected to v). Hence

 c(v)=
2E(v)

kv (kv-1) (1)

 where kv is the number of neighbors of kv

and E(v) is the number of edges between
them. The intuitive interpretation of the
clustering coefficient is somehow subtle.
If the total number of neighbors of v is kv,
the maximum number of edges than can
exist within that neighborhood is kv (kv
-1)/2 . Hence, the clustering coefficient
represents the fraction of the number of
edges that really are in a neighborhood.
Therefore it can be considered as a
measurement of the tendency of a given
vertex to promote relationships among its
neighbors. In a completely random graph,
the clustering coefficient is low, because
the probability of any two vertices being
connected is the same, independently on
them sharing a common neighbor. On the
other hand, it has been shown that most
social networks present significantly high
clustering coefficients (for instance, the
probability of two persons being friends
is not independent from the fact that
they share a common friend) (Albert &
Barabasi, 2002; Watts, 2003).

 From an organizational point of view, the
clustering coefficient helps to identify hot
spots of knowledge exchange on dynamic
networks. When this parameter is high
for a vertex, that vertex is promoting its
neighbors to interact with each other.
Somehow it is fostering connections

among its neighborhood. High clustering
coefficients in networks are indicative for
cliques. Besides, the clustering coefficient
is also a measurement of the redundancy
of the communication links around a
vertex.

• Weighted clustering coefficient (Latora
& Marchiori, 2003). The clustering coef-
ficient does not consider the weight of
edges. We may refine it by introducing
the weighted clustering coefficient, cw, of
a vertex, which is an attempt to general-
ize the concept of clustering coefficient
to weighted networks. Given a vertex v
in a weighted graph G it can be defined
as:

 cw(v)= ∑
i≠j∈NG(v)

wij
1

kv(kv-1)
 (2)

 where NG(v) is the neighborhood of v in

G (the subgraph of all vertices connected
to v), wij is the degree of relationship of
the link between neighbor i and neighbor
j (wij=0 if there are no links), and kv is
the number of neighbors. The weighted
clustering coefficient can be interpreted
as a measurement of the local efficiency
of the network around a particular ver-
tex, because vertices promoting strong
interactions among their neighbors will
have high values for this parameter. It
can also be seen as a measurement of
the redundancy of interactions around a
vertex.

• Distance centrality (Sabidussi, 1996).
The distance centrality of a vertex, Dc,
is a measurement of its proximity to the
rest. It is sometimes called closeness
centrality as the higher its value the closer
that vertex is (on average) to the others.
Given a vertex v and a graph G, it can be
defined as:

 Dc(v)= 1
∑ t∈G dG(v,t) (3)

Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006 33

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

 where dG(v,t) is the minimum distance
from vertex v to vertex t (i.e., the sum of
the costs of relationship of all edges in
the shortest path from v to t). The distance
centrality can be interpreted as a mea-
surement of the influence of a vertex in
a graph because the higher its value, the
easier for that vertex to spread information
through that network. Observe that when
a given vertex is “far” from the others, it
has a low degree of relationship (i.e., a
high cost of relationship) with the rest.
So, the term ∑t∈GdG(v.t) will increase,
meaning that it does not occupy a central
position in the network. In that case, the
distance centrality will be low.

 Research has shown that employees
who are central in networks learn faster,
perform better, and are more committed
to the organization. These employees are
also less likely to turn over. Besides, from
the point of view of information propaga-
tion, vertices with high centrality are like
“hills” on the plain, in the sense that any
knowledge is put on them is rapidly seen
by the rest and spreads easily to the rest
of the organization.

• Betweenness centrality (Anthonisse,
1971; Freeman, 1977). The betweenness
centrality of a vertex, c, is a measurement
of the number of shortest paths traversing
that particular vertex. Given a vertex v
and a graph G, it can be defined as:

 Bc(v)= ∑
s≠v≠t≠G

σst(v)
σst

 (4)

 where σst(v) is the number of shortest paths
from s to t going through v, and σst is the
total number of shortest paths between
s and t. The betweenness centrality of a
vertex can be interpreted as a measure-
ment of the information control that it
can perform on a graph, in the sense that
vertices with a high value are intermediate
nodes for the communication of the rest. In
our context, given that we have weighted
networks, multiple shortest paths between
any pair of vertices are highly improbable.

So, the term σst(v) /σst takes usually only
two values: 1, if the shortest path between
s and t goes through v, or 0 otherwise.
So, the betweenness centrality is just a
measurement of the number of shortest
paths traversing a given vertex.

 In the SNA literature vertices with high
betweenness centrality are known to cover
“structural holes.” That is, those vertices
glue together parts of the organization that
would be otherwise far away from each
other. They receive a diverse combina-
tion of information available to no one
else in the network and have therefore a
higher probability of being involved in
the knowledge generation processes.

High values of the clustering coefficient
are usually a symptom of small world behavior.
The small world behavior of a network can be
analyzed by comparing it with an equivalent (in
number of vertices and edges) random network.
When a network has a diameter (or average
distance among vertices) similar to its random
counterpart but, at the same time, has a higher
average clustering coefficient, it is defined as
a small world. It is well known (Watts, 2003)
that small world networks are those optimiz-
ing the short and long term information flow
efficiency. Those networks are also especially
well adapted to solve the problem of searching
knowledge through their vertices.

Table 1 summarizes the various SNA
parameters that have been presented in this
section, their meanings, and the information
they provide. These parameters, and their dis-
tributions and correlations will characterize the
corresponding networks. From their study, a lot
can be learned about the underlying organization
and structure that those networks capture. An
attempt to illustrate this is found in the follow-
ing sections by studying several cases on real
libre software projects.

CASE STUDIES: APACHE, KDE,
AND GNOME

Apache,5 KDE, and GNOME are all well
known libre software projects, large in size (each

34 Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

one well above the million of lines of code),
in which several subprojects (modules) can be
identified. They have already been studied from
several points of view (Germán, 2004; Koch &
Schneider, 2002; Mockus et al., 2002). Here,
they will be used to show some of the features
of our proposed methodology for applying SNA
to software projects.

The use of versioning systems is fortu-
nately the case for most large libre software
projects. Some approaches on how to gather
information from versioning repositories, in
particular CVS (Germán, 2004; Germán &
Hindle, 2005; Zimmermann & Weißgerber,
2004; Zimmermann, Weißgerber, Diehl &
Zeller, 2005), have been presented, and are used
in this study. Therefore, focus is set on what to
do once that information is available, and not
on how to gather it.

Tables 2 and 3 summarize the main param-
eters of both. In the case of commiter networks
the GNOME case has been omitted.

By comparing the data in both tables some
interesting conclusions can already be drawn.
It may be observed, for instance, that the aver-
age number of commiters per module is greater
in KDE (12.5) than in Apache (4.3), meaning
more people being involved in the average KDE
subproject. It can also be highlighted that the
average degree on the commiters networks is
in general larger than in the modules ones. This
is especially true for KDE, which rises from
a value of 21.4 in the latter case to 225 in the
former. In the case of Apache it only raises from
14.2 to 31.1. Therefore, we can conclude that in
those cases, commiters are much more linked
than modules. The percentage of modules linked
gives an idea of the synergy (in form of shar-

Table 1. Summary of the SNA parameters described in this article, their meaning and their
interpretation

Parameter Meaning Interpretation

Degree of relationship Common activity among two entities
(measured in commits) How strong the relationship is

Cost of relationship Inverse of the degree of relationship Gives the cost of reaching one vertex from
the other

Degree Number of vertices connected to a node Popularity of a vertex

Distribution degree Probability of a vertex having a given
degree

Topology of the network (Poisson or power
law distributions)

Weighted degree Degree considering weights of the links
among vertices

Maximum capacity to receive information for a
vertex. Effort in maintaining the relationships

Clustering coefficient
Fraction of the total number of edges
that could exist for a given vertex that
really exist

Transitivity of a network: tendency of a vertex
to promote relationships among its neighbors.
Helps identifying hot spots of knowledge
interchange in dynamic networks

Weigh ted c lus te r ing
coefficient

Generalization of the clustering coefficient
concept to weighted networks

Local efficiency of the network around a vertex.
Redundancy of interactions around a vertex

Distance centrality Measurement of the proximity of a vertex
to the rest

Gives the influence of a vertex in a graph. The
higher the value the easier it is for the vertex to
spread information through the network

Betweenness centrality Number of shortest paths traversing a
vertex

Measurement of the information control. Higher
values mean that the vertex is an intermediate
node for the communication of the rest. Vertices
with high values are known to cover “structural
holes”

Small world

Diameter (or average distance among
vertices) similar but higher average
clustering coefficient than random
network

Optimizes short and long term information flow
efficiency. Especially well adapted to solve
the problem of searching knowledge through
their vertices

Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006 35

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

ing information and experience) in a network
as many modules have commiters in common.
It can be assumed that this happens because
of the technical proximity between modules.
Regarding our case studies, KDE and GNOME
show percentages near 30%, while the average
Apache module is only linked to 8% of the other
modules in the versioning system. So, Apache is
specially fragmented in several module families
that have no commiters in common. KDE and
GNOME have a higher cohesion, while there
is more dispersion in Apache.

In the following sections some specific
aspects of all those networks will be studied,
with the idea of illustrating both how the meth-
odology is applied and which kind of results
can be obtained from it.

DEGREE IN THE MODULES
NETWORK

Table 4 shows that the number of modules
for Apache (175), KDE (73), and GNOME (667)
differ significantly. These projects are similar in
software size (at least in order of magnitude),
so the number of modules depends mainly on
the various strategies that the projects follow
when creating a new module. KDE has a struc-
tured CVS; applications that belong together

are usually grouped into one module (so, for
instance, there exists the kdenetwork module
for many network applications or the koffice
module for the various office suite programs).
Apache has modules at the application level.
Finally, GNOME follows a more chaotic ap-
proach, resulting in many more modules. Almost
every application, even components (there are
almost a dozen different GIMP add-ons with
their own module) can be found to be a module
in themselves.

The most popular characterization of
network degree is the distribution degree P(k),
which measures the probability of a given
vertex having exactly k edges. However, the
representation of P(k) in networks of a small
size like ours is usually messy.6 In these cases,
the specialized literature prefers to use an
associated parameter called the cumulative
distribution degree, CP(k), which is defined
as CP(k) = ∑k

∞
P(i) and is usually represented

in a log-log scale.
Figure 1 shows the cumulative distribu-

tion degree for our three networks. As it can be
observed, all of them present a sharp cut off,
which is a symptom of an exponential fall of the
distribution degree tail. From a practical point
of view, this means that none of our networks

Project name Modules (Vertices) Edges Average % of edges (avg)
Apache 175 2491 14.23 8.13
KDE 73 1560 21.37 29.27
GNOME 667 121,134 181.61 27.23

Table 2. Number of vertices and edges of the module networks in the Apache, GNOME, and
KDE projects

Table 3. Number of vertices and edges of the commiter networks in the Apache and KDE proj-
ects

Project name Commiters
(Vertices) Edges Commiters per

module Avg Number of edges

Apache 751 23,324 4.3 31.06
KDE 915 205,877 12.5 225.00
GNOME 869 N/A 1.3 N/A

36 Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

follow a power law distribution. This is quite
a remarkable finding, because the specialized
literature has shown that most social networks
present power laws for this parameter. This
implies that the growth of the network does
not follow the traditional random preferential
attachment law. Thus, it is difficult to come to
any conclusions at this point; maybe by using
a weighted network approach, as shown later,
we could infer more information about the
network topology.

Starting with the degree of the vertices,
an analysis of assorts of the networks can also
be carried out. The assorts measure the aver-
age degree of neighbors of vertices having a
particular degree. For this reason it can also be
called the degree-degree distribution.

Figure 2a represents this parameter for
our networks. As can be observed, all three
networks are elitist, in the sense that vertices
tend to connect to other vertices having a
similar degree (“rich” with “rich” and “poor”
with “poor”). This is especially clear in the
case of GNOME, where the curve approaches
a linear equation with slope 1. Apache project
deviates slightly from that behavior, showing

Figure 1. Cumulative degree distribution for Apache (), KDE (+), and GNOME (⋅)

some higher degree modules connected to other
modules of a lower degree.

The previous analysis assumes unweight-
ed networks. If weighted edges are considered
now, similar conclusions are obtained. Figure 2b
represents the cumulative weighted distribution
degree of the networks. Comparing this picture
with Figure 1, it may be remarked that the sharp
exponential cut-offs have disappeared. This is
especially clear in the case of GNOME, where
the curve tail can be clearly approximated by
a power law. The interpretation for this find-
ing is that the growth of that network could be
driven by a preferential attachment law based
on weighted degrees. This means that the prob-
ability of a new module to establish a link with
a given vertex is proportional to the weighted
degree of that vertex. That is, the commiters of
new modules are, with high probability, com-
miters of modules which are well connected
(have high weighted degree) in the network.
It should be noted that the use of weights has
given a more realistic picture.

From Figure 1, it can be remarked that the
sharp cut offs for Apache and KDE are close
to each other. This means that the maximum

Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006 37

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

numbers of relationships in both projects are
similar. Nevertheless, observing Figure 2b, it
can be seen that the KDE tail is clearly over
the Apache tail. This fact implies that KDE
weighted links are, on average, stronger than
those of Apache. This can be quantitatively

verified: we have calculated the average edge
weight for the three projects obtaining 1,409.27
for Apache, 11,136.82 for KDE, and 7,661.18
for GNOME.

If multiplied, the average edge weight and
the number of modules, the figures obtained

Figure 2. Assortativity (degree - degree distribution) for Apache (), KDE (+) and GNOME (⋅).
Cumulative weighted degree distribution for Apache (), KDE (+) and GNOME (⋅)

(a) Assortativity

(b) Cumulative weighted degree

38 Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

are the total amount of commits performed by
developers that contribute to at least two mod-
ules: 105,695 for Apache, 812,988 for KDE,
and 5,110,007 for GNOME. This gives an idea
of the modularity of the modules as a lower
number of commits is indicative for developer
work being more focused on a low number of
modules. While the figures for Apache are not
surprising (we have already noticed with previ-
ous parameters that is a high level of structure
in the Apache project), the difference between
KDE and GNOME is astonishing. The orga-
nization of the KDE CVS repository yields in
more independent modules than the ones found
in the one for GNOME.

CLUSTERING COEFFICIENT
IN THE MODULES NETWORK

For the analysis of the clustering coef-
ficient, we have represented its distribution in
Figure 3a.

In Table 4 the average distance <d> among
vertices are represented, together with the aver-
age clustering coefficients <cc> for our three
networks and their equivalent random counter-
parts (<rd> is the random average distance and
<rcc> is the random average clustering coef-
ficient). As can be observed, the three networks
satisfy the small world condition, since their
average distances are slightly above those of
their random counterparts; but the clustering
coefficients are clearly higher.

As can be observed, the average random
clustering coefficients for KDE and GNOME
are very close to the real ones, due to the high
density of those networks. This could be an
indication of over-redundancy in their links.
That would mean that the same efficiency
of information could be obtained with fewer
relationships (i.e., eliminating many edges in
the network without significantly increasing the
diameter or reducing the clustering coefficient).
In this sense, the Apache network seems to be
more optimized. To interpret this fact, the reader
may remember that links in this network are
related to the existence of common developers
for the linked modules. It should be noted that

redundancy is probably a good characteristic
of a libre software project as it may lose many
developers without being affected heavily. It
may be especially interesting to have over-re-
dundancy in projects with many volunteers, as
in those environments, turnover may be high.
Future research should focus on investigating
whether over-redundancy is a good or bad pa-
rameter in the case of libre software projects. On
the other side, how much of this redundancy is
due to the taking of a static picture of the project
should be researched; it may well be that the
redundancy we have observed is the result of
different generations of developers working on
the same file in different periods of time.

Some interesting conclusions can also be
obtained by looking at the weighted clustering
coefficient. In Figure 3b we can observe the
average weighted clustering coefficient as a
function of the degree of vertices (the weighted
degree-degree distribution). As we have already
noticed, the KDE and GNOME networks have
a similar local redundancy, which is higher than
the one of Apache. High redundancy implies
more fluid information exchanges in the short
distances for the first two projects. Besides, the
weighted clustering coefficient lowers with the
degree in all cases, according to a power law
function. We can infer that highly connected ver-
tices cannot maintain their neighbors as closely
related as poorly connected ones. This happens
typically in most social networks because the
cost of maintaining close relationships in small
groups is much lower than the equivalent cost
for large neighborhoods.

DISTANCE CENTRALITY IN
THE MODULES NETWORK

The analysis of the distance centrality
of vertices is relevant because this parameter
measures how close a vertex is to the rest of
the network. In Figure 4a, the distance central-
ity distribution for our three networks can be
observed. They follow multiple power laws,
making higher values of the parameter most
probable. This is an indication of well structured
networks for the fast spread of knowledge and

Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006 39

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

Figure 3. Clustering coefficient distribution for Apache (), KDE (+) and GNOME (⋅). Aver-
age weighted clustering coefficient as a function of the degree of vertices for Apache (), KDE
(+) and GNOME (.)

(a) Clustering coefficient distribution

(b) Average weighted clustering coefficient

Project name <d> / <rd> <cc> / <rcc>
Apache 2.06 / 1.47 0.73 / 0.19
KDE 1.31 / 1.11 0.88 / 0.65
GNOME 1.46 / 1.10 0.87 / 0.54

Table 4. Small world analysis for the module networks

40 Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

information.
We can also analyze the average distance

centrality as a function of the degree (average
distance centrality-degree distribution), which
is shown if Figure 4b. It can be observed that
in all three cases the average distance centrality

grows with the degree following, approximately,
a power law of low exponent. This means that,
in terms of distance centrality, the networks are
quite democratic, because there is not a clear
advantage of well connected nodes compared
to the rest. Curiously enough, the Apache and

Figure 4. Distance centrality distribution for Apache (), KDE (+), and GNOME (⋅); Aver-
age distance centrality as a function of the degree of vertices for Apache (), KDE (+), and
GNOME (⋅)

(a) Distance centrality distribution

(b) Average distance centrality

Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006 41

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

GNOME curves are quite similar, while the
KDE one is clearly an order of magnitude over
the rest. This could be an effect of the lower
size of this network, but is also an indication
of an especially well structured network in
terms of information spread. So, even if KDE
showed to be more modular as has been seen
for a previous parameter, its structure seems to
maximize information flow.

BETWEENNESS CENTRALITY
IN THE MODULES NETWORK

The distance centrality of a vertex indi-
cates how well new knowledge created in a
vertex spreads to the rest of the network. On
the other hand, betweenness centrality is a
measurement of how easy it is for a vertex to
generate this new information. Vertices with
high betweenness centrality indexes are the
crossroads of organizations, where informa-
tion from different origins can be intercepted,
analyzed, or manipulated. In Figure 5a, the
betweenness centrality distribution for our three
networks can be observed. In the same way, this
was the case for distance centrality, as it grows
following a multiple power law. Nevertheless,
there is a significant difference between the
distributions of these two parameters. Although
the log-log scale of the axis of Figure 5a does not
allow visualizing it, the most probable value of
the betweenness centrality in all three networks
is zero. Just to show an example, only 102 out
of 677 vertices of the GNOME network have a
nonzero betweenness centrality. So, the distance
centrality is a common good of all members of
the network, while the betweenness centrality
is owned by reduced elite. This should not
be surprising at all, as projects usually have
modules (i.e., applications) which have a more
central position and attract more development
attention. Surrounding these modules, other
minor modules may appear.

 This fact can also be visualized in Figure
5b, where we represent the average betweenness
centrality as a function of the degree. It can be
clearly seen that only vertices of high degree
have nonzero betweenness centralities.

COMMITER NETWORKS
The analysis of commiter networks draw

similar conclusions to those shown for module
networks, and therefore they are not going to
be commented on in detail. For instance, the
cumulative degree distribution for the two com-
miter networks is shown in Figure 6a, which has
clearly the same qualitative properties than for
this parameter for the module networks shown
in Figure 1. The same holds true for the com-
miter cumulative weighted degree distribution
depicted in Figure 6b, or for the average degree
as a function of degree, depicted in Figure 7a,
where it can be noticed how both networks
maintain the elitist characteristic also observed
in the case of modules.

 An interesting feature of commiter net-
works can be seen in Figure 7b. The average
weighted degree of authors remains more or
less constant for low values of the degree.
Nevertheless, in the case of KDE, it increases
meaningfully for the highest degrees. The impli-
cation is that commiters with higher degrees not
only have more relationships than the rest, but
also their relationships are much stronger than
the average. This indicates that authors having
higher degrees are more involved in the project
development and establish stronger links than
the rest. At the same time, as we observed in
Figure 7a, they only relate to other commiters
that are involved in the project to the same
degree as they are. If this behavior is found in
other large libre software projects, it could be
a valid method to identify the leading “core”
group of a libre software project. On the other
hand, the Apache project seems to promote a
single category of developers, given that the
weighted degree does not depend so clearly
on the degree of vertices. It may be also that
because of the fragmentation of the Apache
project in many families of modules, it is easy
to developers to reach a point where they do
not have the possibility to get to know more
developers.

 Table 5 digs into the small-world proper-
ties of commiter networks. As we can observe,

42 Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

both networks can still considered to be small
world. The Apache case is especially interest-
ing, because an increase in the average distance
is observed. This characteristic plus the large
value of the clustering coefficient may indicate
that the network is forming cliques.

CONCLUSIONS, LESSONS
LEARNED, AND FURTHER

WORK
In this article an approach to the study

of libre (free, open source) software projects
has been presented, based on the quantitative

Figure 5. Betweenness centrality distribution for Apache (), KDE (+) and GNOME (⋅). Aver-
age betweenness centrality distribution for Apache (), KDE (+) and GNOME (⋅)

(a) Betweenness centrality distribution

(b) Average betweenness centrality distribution

Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006 43

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

and qualitative application of social networks
analysis to the data retrieved from source code
management repositories. Since most libre
software projects maintain such repositories,
and allow for public read-only access to them,
this analysis can be repeated for many of them.
However, given its characteristics, it will be

most useful for large projects, well above the
hundreds of thousands of lines of code and
dozens of developers.

We have designed a detailed methodol-
ogy which applies this SNA-based approach
to the study of CVS data, and which can be
automated. It starts by downloading the re-

Figure 6. Cumulative degree distribution for Apache () and KDE (+); Cumulative weighted
degree distribution for Apache () and KDE (+)

(a) Cumulative degree distribution

(b) Cumulative weighted degree distribution

44 Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

quired information from CVS, and produces
as an output several graphs and tables which
can be interpreted to gain knowledge about the
informal organization of the studied project. It
is important to highlight a set of parameters in

the output that are suitable for characterizing
several aspects of the organization of the stud-
ied project, which makes it possible to gain a
lot of insight on how a group of developers is
managing coordination and information flow

Figure 7. Degree - degree distribution for Apache () and KDE (+); Average weighted degree
as a function of the degree for Apache () and KDE (+)

(a) Degree - degree distribution

(b) Average weighted degree as a function of degree

Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006 45

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

within the project. In addition, it has been
shown that the introduction of weights in the
relationships gives more realistic information
about the projects under study.

It has also been shown how our method-
ology is applied to some important and well
known projects: KDE, Apache, and GNOME.
Although these studies are sketched just as case
examples, some relevant results can also be
extracted from them. For instance, it has been
shown how all the networks that have been
studied fulfill the requirements to be a small
world. This has important consequences on their
characterization, since small worlds have been
comprehensively studied and are well under-
stood in many respects. We have also not only
found that the growth of the studied networks
cannot be explained by random preference at-
tachment (something that could be previously
suspected). Moreover, it matches pretty well the
pattern of preference attachment related to the
weight (amount of shared effort) of links. Some
other relevant results are the elitist behavior
found in these projects with respect to the con-
nectivity of modules and developers, which are
indicators of an over-redundancy of links, and
of a good structure for the flow of knowledge,
and the absence of centers of power (in terms
of information flux). All of these conclusions
should be validated by studying more projects,
and by analyzing with detail their microimpli-
cations before being raised to the category of
characteristics of libre software projects, but that
so far are good lines of further research.

There are some other studies applying
similar techniques to libre software projects.
For instance, Crowston and Howison (2003)
suggests that large projects are more modular
than small ones. However, to our knowledge the

kind of comprehensive analysis shown in this
article has never been proposed as a methodol-
ogy for characterizing libre software projects
and their coordination structure. In fact, after
using it in the study of some projects, we believe
that it has a great potential to explore informal
organizational patterns, and uncovering nonob-
vious relationships and characteristics of their
underlying structure of coordination.

REFERENCES
Albert, R., & Barabasi, A.-L. (2002). Statistical

mechanics of complex networks. Reviews
of Modern Physics, 74, 47–97.

Albert, R., Barabási, A.-L., Jeong, H., & Bian-
coni, G. (2000). Power-law distribution of
the World Wide Web. Science, 287.

Anthonisse, J. (1971). The rush in a directed
graph (Tech. Rep.). Amsterdam: Stichting
Mathemastisch Centrum.

Conway, M. (1968). How do committees invent?
Datamation, 14(4), 28–31.

Crowston, K., & Howison, J. (2003). The
social structure of open source software
development teams. In Proceedings of
the ICIS.

Crowston, K., Scozzi, B., & Buonocore, S.
(2003). An explorative study of open
source software development structure. In
Proceedings of the ECIS, Naples, Italy.

Dinh-Trong, T.T., & Bieman, J.M. (2005).
The FreeBSD project: A replication case
study of open source development. IEEE
Transactions on Software Engineering,
31(6), 481–494.

Elliott, M., & Scacchi, W. (2004). Mobilization
of software developers: The free software
movement (Tech. Rep.). Retrieved June
16, 2006, from http://opensource.mit.
edu/papers/elliottscacchi2.pdf

Freeman, C. (1977). A set of measures of cen-
trality based on betweenness. Sociometry,
40, 35-41.

Fuggetta, A. (2003). Open source software:
An evaluation. Journal of Systems and
Software, 66(1), 77–90.

Project name <d> / <rd> <cc> / <rcc>
Apache 2.18 / 1.60 0.84 / 0.08
KDE 1.47 / 1.10 0.86 / 0.52

Table 5. Small world analysis for commiter
networks

46 Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Germán, D. (2004). An empirical study of
fine-grained software modifications. In
International Conference in Software
Maintenance.

Germán, D. (2004). The GNOME project: A
case study of open source, global soft-
ware development. Journal of Software
Process: Improvement and Practice.

Germán, D.M., & Hindle, A. (2005). Visual-
izing the evolution of software using
softChange. Journal of Software Engi-
neering and Knowledge Engineering.

Ghosh, R.A., & Prakash, V.V. (2000). The
Orbiten free software survey. 5(7).

Gîrba, T., Kuhn, A., Seeberger, M., & Ducasse,
S. (2005). How developers drive soft-
ware evolution. In Proceedings of the
International Workshop on Principles
in Software Evolution (pp. 113–122),
Lisbon, Portugal.

Godfrey, M.W., & Tu, Q. (2000). Evolution in
open source software: A case study. In
Proceedings of the International Con-
ference on Software Maintenance (pp.
131–142), San Jose, California.

González-Barahona, J.M., López-Fernández,
L., & Robles, G. (2004). Community
structure of modules in the Apache proj-
ect.

Guimera, R., Danon, L., Diaz-Guilera, A., Gi-
ralt, F., & Arenas, A. (2003). Self-similar
community structure in a network of
human interactions. Physical Review E
68, 065103(R).

Healy, K., & Schussman, A. (2003). The ecol-
ogy of open-source software development.
(Tech. Rep.). University of Arizona.

Koch, S., & Schneider, G. (2002). Effort, coop-
eration and coordination in an open source
software project: GNOME. Information
Systems Journal, 12(1), 27–42.

Krishnamurthy, S. (2002). Cave or com-
munity? An empirical investigation of
100 mature open source projects. First
Monday, 7(6).

Kumar, R., Raghavan, P., Rajagopalan, S., &
Tomkins, A. (2002). The Web and so-

cial networks. IEEE Computer, 35(11),
32–36.

Latora, V., & Marchiori, M. (2003). Eco-
nomic small-world behavior in weighted
networks. Euro Physics Journal, B32,
249-263.

Lopez, L., Gonzalez-Barahona, J.M., &
Robles, G. (2004). Applying social
network analysis to the information in
cvs repositories. In Proceedings of the
International Workshop on Mining Soft-
ware Repositories, 26th International
Conference on Software Engineering,
Edinburg, Scotland.

Madey, G., Freeh, V., & Tynan, R. (2002). The
open source development phenomenon:
An analysis based on social network
theory. In Proceedings of the Americas
Conference on Information Systems
(AMCIS2002) (pp. 1806–1813), Dallas,
Texas.

Mockus, A., Fielding, R.T., & Herbsleb, J.D.
(2002). Two case studies of open source
software development: Apache and
Mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3),
309–346.

Newman, M.E.J. (2001a). Scientific collabora-
tion networks: I. Network construction
and fundamental results. Physical Review,
E64, 016131.

Newman, M.E.J. (2001b). Scientific collabora-
tion networks: Ii. Shortest paths, weighted
networks, and centrality. Physical Review,
E64, 016132.

Raymond, E.S. (1997). The cathedral and the
bazar. First Monday, 3(3).

Robles, G., Amor, J.J., Gonzalez-Barahona,
J.M., & Herraiz, I. (2005a). Evolution and
growth in large libre software projects. In
Proceedings of the International Work-
shop on Principles in Software Evolution
(pp. 165–174), Lisbon, Portugal.

Robles, G., González-Barahona, J.M., & Michl-
mayr, M. (2005b). Evolution of volunteer
participation in libre software projects:
Evidence from Debian. In Proceedings

Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006 47

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

of the 1st International Conference on
Open Source Systems (pp. 100–107),
Genoa, Italy.

Robles, G., Koch, S., & Gonzalez-Barahona,
J.M. (2004). Remote analysis and mea-
surement of libre software systems by
means of the cvsanaly tool. In Proceed-
ings of the 2nd ICSE Workshop on Remote
Analysis and Measurement of Software
Systems (RAMSS), 26th International
Conference on Software Engineering,
Edinburg, Scotland.

Sabidussi, G. (1996). The centrality index of a
graph. Psychometrika, 31, 581-606.

Wagstrom, P.A., Herbsleb, J.D., & Carley, K.
(2005). A social network approach to
free/open source software simulation.
In Proceedings of the 1st International
Conference on Open Source Systems (pp.
100–107), Genoa, Italy.

Watts, D.J. (2003). Six degrees. New York:
W.W. Norton & Company.

Watts, D.J., & Strogatz, S. (1998). Collective
dynamics of small-world networks. Na-
ture, 393, 440-442.

Xu, J., Gao, Y., Christley, S., & Madey, G.
(2005). A topological analysis of the open
source software development community.
In Proceedings of the 38th Hawaii Inter-
national Conference on System Sciences,
Hawaii.

Zimmermann, T., & Weißgerber, P. (2004). Pro-
cessing CVS data for fine-grained analy-
sis. In Proceedings of the International
Workshop on Mining Software Reposito-
ries (pp. 2–6), Edinburg, Scotland.

Zimmermann, T., Weißgerber, P., Diehl, S., &
Zeller, A. (2005). Mining version his-
tories to guide software changes. IEEE
Transactions on Software Engineering,
31(6), 429–445.

ENDNOTES
* This work has been funded in part by

the European Commission, under the
CALIBRE CA, IST program, contract
number 004337. Israel Herraiz has been
funded in part by Consejeria de Educación
of Comunidad de Madrid and European
Social Fund under grant number 01/
FPI/0582/2005.

1 In this paper the term “libre software” will
be used to refer to any software licensed
under terms that are compliant with the
definition of “free software” by the Free
Software Foundation, and the definition
of “open source software” by the Open
Source Initiative, thus avoiding the con-
troversy between those two terms.

2 Concurrent Version System (CVS) is the
source code management (also known
as versioning) system used in most libre
software projects, although lately a new
generation of tools, including for instance
Subversion, are gaining popularity. In
those projects, the CVS repository is usu-
ally freely readable over the Internet.

3 A Pareto distribution is known to be given
when the 20% most active is responsible
for 80% of the output.

4 For downloading this information we
have used the CVSAnalY tool described
in Robles, Koch, and Gonzalez-Barahona
(2004).

5 Throughout this article, references to
Apache cover all projects lead by the
Apache Foundation and not just the
HTTPd server, usually known as the
Apache Web server.

6 Social network analysis has been applied
to networks with hundreds of thousands,
sometimes millions of vertices. In this
sense, our network is of a small size even

48 Int. J. of Information Technology and Web Engineering, 1(3), 27-48, July-September 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Luis López obtained his PhD in electrical and electronic engineering at Universidad Rey Juan
Carlos in 2003 and his MS in electrical and electronic engineering at Universidad Politécnica
de Madrid and at ENST Télécom-Paris in 1998. He is author of more than 50 publications
including 10 papers published in different research international journals and 20 contributions
to conferences and workshops.

Gregorio Robles received his Telecommunication Engineering degree from the Universidad Poli-
técnica de Madrid (2001) and has recently defended his PhD thesis at the Universidad Rey Juan
Carlos (2006). His research work is centered on the empirical study of libre software development,
especially from but not limited to a software engineering perspective. He has developed or col-
laborated in the design and implementation of software programmes to automate the analysis of
libre software and the tools used to produce them. He has also been involved in several projects
related to the study and promotion of libre software financed by the European Commission IST
programmes, such as FLOSS (2000-1), CALIBRE (2004-6) or FLOSSWorld (2005-7).

Jesus M. Gonzalez-Barahona teaches and researches in Universidad Rey Juan Carlos, Mostoles
(Spain). He started to be involved in the promotion of libre software in 1991. Since then, he has
carried on several activities in this area, including the organization of seminars and courses, and
the participation in working groups on libre software, both at the Spanish and European levels.
Currently he collaborates with several libre software projects (including Debian) and associations,
writes in several media about topics related to libre software, and consults for companies and
public administrations on issues related to their strategy on these topics. His research interests
include libre software engineering, and in particular quantitative measures of libre software
development and distributed tools for collaboration in libre software projects. In this area, he
has published several papers, and is participating in some international research projects (more
info in http://libresoft.urjc.es). He is also one of the promoters of the idea of an European master
program on libre software, and has specific interest in the education in that area.

Israel Herraiz holds a MSc in chemical and mechanical engineering, a BSc in chemical engi-
neering and he is currently pursuing his PhD in computer science at the Universidad Rey Juan
Carlos in Madrid, Spain. He discovered free software in 2000, and has since then developed
several free tools for chemical engineering.

