Managing Libre Software Distributions under a Product Line Approach*

Israel Herraiz, Gregorio Robles, Rafael Capilla, Jesus M. Gonzalez-Barahona
Universidad Rey Juan Carlos (Madrid, Spain)
{israel.herraiz, gregorio.robles, rafael.capilla, jesus.gonzalez.barahona} @urjc.es

Abstract

Software product lines have already proven to be a
successful methodology for building and maintaining a
collection of similar software products, based on a com-
mon architecture. However, when the base system is het-
erogeneous and extremely large in size, an extra level of
complexity is introduced that should be addressed with
appropriate methods and techniques. A good example of
this kind of systems is the product family composed by
the software distributions composed by libre (free, open
source) software, and based on Linux or BSD kernels.
All of them can be considered as a part of a product
line, based on a large collection of thousands of pack-
ages. One of the main problems faced by these distribu-
tions is the increasingly growing number of dependen-
cies among packages, which is already caused problems,
with a high risk of rendering the management of such
large distributions impossible. In this paper we address
some of challenges and main problems of Linux distribu-
tions when adopting a product line approach, with spe-
cial focus to the maintenance and evolution of such sys-
tems.

1. Introduction

Large software distributions based on libre software!
have become widespread in recent years, mostly because
of the success and popularity of those based on Linux

*The work of Israel Herraiz, Gregorio Robles and Jesus M.
Gonzalez-Barahona has been funded in part by the European Commis-
sion, under the FLOSSMETRICS (FP6-IST-5-033547), QUALOSS
(FP6-IST-5-033547) and QUALIPSO (FP6-IST-034763) projects, and
by the Spanish CICyT, project SobreSalto (TIN2007-66172). The
work of Rafael Capilla is partially funded by the PILOH project of the
Spanish Ministry of Education and Research programme under grant
number URJC-CM-2006-CET-0603.

'In this paper we will use the term “libre software” to refer to any
software licensed under terms compliant with the FSF definition of
“free software”, and the OSI definition of “open source software”.

(and to some extent, BSD) kernels. Many different
groups have put together their own distribution. Some of
them are volunteers (such as Debian), while some oth-
ers fall under the umbrella of a company, usually with
a business model based on providing services around it.
The most well-known example of the latter approach is
Red Hat Linux, but other products such as Ubuntu (pro-
moted by Canonical), Mandriva or SuSE (now owned by
Novell) feature also a considerable end-user attention.

In recent years, specialized and customized distri-
butions are also increasingly popular, ranging from
those promoted by public administrations to those used
by companies to satisfy specialized needs. For in-
stance, there are several Spanish regional governments
switching to libre software in educational environments,
most of them using a slightly modified version of the
volunteer-driven Debian GNU/Linux distribution. With
respect to companies, Maemo (the application develop-
ment platform for the Nokia 770 Internet Tablet) can be
a good example. Nokia has been able of completing
a Debian-based distribution with some in-house devel-
oped software, shipping the result as the base software
of the 770. With these antecedents, it would not come
as a surprise that the use of end-user or product specific
software distributions, based on libre software distribu-
tions, become a significant trend over the next years.

However, these collections of software are usually
large (in the range of tens, or even hundreds of millions
of lines of code [9]), composed of hundreds or thousands
of heterogeneous packages developed by independent
teams, and with an increasingly number of interdepen-
dencies [7]. Several problems arise from this size and
complexity, which are been faced by the teams putting
together and maintaining those distributions [4].

To better understand those problems, and find solu-
tions to them, we propose to apply the notion of prod-
uct lines to the construction of libre software distribu-
tions. Distributions, and the packages composing them,
can be considered as a huge product line with hundreds

of dependencies and configurable options [5]. From this
point of view, we analyze the evolution of the software
packages in some releases of a well known distribution
(Debian GNU/Linux), as well as the number of depen-
dencies among them. This will serve to study how de-
pendencies can be dealt with in a novel way, in order
to better support their evolution and scalability when
new releases are distributed. The remainder of the pa-
per is as follows. In section 2 we discuss the relation-
ship of Linux distributions to software product lines and
we highlight the problem for managing dependencies of
Linux packages. Section 3 sketches the challenges and
an agenda for future research work and section 4 dis-
cusses related work. We finally summarize our work in
section 5 as well as future work.

2. Linux distributions as product lines

Distributions are usually organized in software pack-
ages (usual applications or libraries). Each package of-
ten depend on the functionality offered by some other
packages. In order to work together, these dependencies
have to be met at installation time or run time. Hence,
in order to release new distributions under a product line
approach, we need to define which of these packages
can be considered as core components in the Product
Line Architecture (PLA) and how they should be com-
posed. Selecting the right configuration options during
package installation involves also the definition of the
binding times when releasing a particular distribution.

As a distribution grows and becomes more complex,
the number of packages, the possible system configura-
tions, and the dependencies among packages grow expo-
nentially over time. Different types of dependencies are
possible and thus the number of alternatives are high.
In general, the number of dependencies does not grow
at the same pace as the number packages, but superlin-
early. Therefore, a higher level of complexity is intro-
duced when configuring and installing new releases. In
next subsection we analyze the complexity of these de-
pendencies with a case study.

2.1. Dependency Analysis

To explore the dependency maintenance problems,
we have selected the Debian GNU/Linux distribution as
case study. Debian is one of the largest (and maybe the
largest) software systems in the world. The size of its
latest stable distribution (Debian 3.1) contains well over
200 millions of lines of code, and is a healthy system
with good reputation of stability and matureness [9, 10].

Debian 3.1 contains around 19,300 packages, which are
maintained by 1380 developers. These packages are not
developed by Debian developers themselves: their work
consists basically on packaging and integrating the up-
stream software into a coherent GNU/Linux distribution.
Furthermore, Debian is the base distribution for many
other Linux distributions, as was already mentioned in
the introduction.

For this study we have considered all Debian releases
from its beginnings in the mid 1990s. We have used the
standard Debian tool apt —cache for all the considered
releases to obtain the necessary information for our anal-
ysis. We have counted the number of binary packages
ready to be installed including the number of packages
with different names2, and the number of dependencies
among those packages. Table 1 shows the results of our
analysis. The first column refers to the release num-
ber while in the second column the release codename
is given. The third column contains the release date, and
the fourth column specifies the total number of binary
packages. In the fifth column we provide the number
of packages with different names (i.e. only one version
per package is shown). The sixth column of table 1 rep-
resents the number of dependencies found among pack-
ages. The seventh and eighth columns show the ratio
between the number of packages (RP) and dependen-
cies (RD) of the last two releases. The last column gives
the difference between the previous two columns (RP-
RD), as a measurement of the difference between speed
of growth of dependencies and packages.

Table 1 clearly shows the increasing growth rate of
the Debian system. The number of packages has dou-
bled in the last two releases, and the number of depen-
dencies has exploded. This fact increases the complex-
ity of the system, and makes it more difficult to main-
tain. The scalability and the customization activities for
future distributions are also affected by this growth. An-
other empirical evidence of this rising complexity is that
the periods elapsed between the latest releases is becom-
ing larger when compared to older ones. In other words,
as the number of packages and dependencies involved
increases, releasing a new version becomes more com-
plex, resulting in a delay.

When considered in detail, we can see that both the
number of dependencies and packages is growing ex-
ponentially. The logarithm of the number of dependen-
cies over the releases can be linearly approximated, with
a coefficient of » = 0.9850. If we repeat this pro-

2Some packages may have different versions present in the distri-
bution. In this metric we have counted each of those packages just
once, regardless of the actual number of binary packages present be-
cause of the number of different versions.

Release Codename Date # Packages Distinct Versions # Dependencies RP RD RP-RD
1.3 Bo 1997-06-02 2088 1402 5111 N/A N/A N/A
2.0 Hamm 1998-07-24 2757 1946 7379 132 144 0.12
2.1 Slink 1999-03-09 3601 2601 10841 1.31 147 0.16
2.2 Potato 2000-08-14 5583 4311 19284 1.55 1.78 0.23
3.0 Woody 2002-07-19 10771 8693 44164 193 2.29 0.36
3.1 Sarge 2005-06-05 19300 15305 96981 1.79 2.20 0.40

Table 1. Number of packages and their dependencies in several of the stable releases of Debian.
RP is the ratio between the number of packages of the last two releases. RD is the ratio between
the number of dependencies of the last two releases.

cedure with the number of packages, the coefficient is
r = 0.9830. Figures 1 and 2 show clearly this exponen-
tial growth.

In addition, the last column of table 1 shows the rel-
ative growth of the ratio of packages to dependencies.
Therefore, it is clear that the relative growth of depen-
dencies is higher than the relative growth of the number
of packages, which means that dependencies are grow-
ing even faster than the number of packages over time:
adding new packages increases the number of dependen-
cies superlinearly.

20000 4

15000 o

10000 o [0 Packages
M Distinct versions

5000

Bo Hamm Slink Potato Woody Sarge

Figure 1. Number of packages in the distri-
bution over releases.

2.2. Adopting a Product Line Approach

In the previous subsection, we have shown empirical
evidence of the dependency growth problem. In such
an scenario, the maintenance and evolution of those sys-
tems becomes more difficult. Package requirements, de-
pendencies and configurable options may render the net-
work of intertwined packages unmanageable. The diffi-

100000 o
80000

60000

O Dependencies

40000 o

20000 H

. '_'.H.H.H.

1
Bo Hamm Slink Potato Woody Sarge

Figure 2. Number of dependencies in the
distribution over releases.

culty of modeling and managing the overall set of depen-
dencies is therefore large in many modern distributions.

To deal with this problem, we encourage the use of
software product lines as a well-known software engi-
neering approach for producing similar software prod-
ucts while taking advantage of hundreds of configurable
options. Product lines exploit the amount of variabil-
ity specified both in the architecture and in the software
components that can be customized as late as possible
(i.e. binding time).

Product lines have been widely discussed in the liter-
ature. Bosch describes in [1] the adoption of a product-
line approach and the applicability to product family
development. Product-line scoping is a key issue be-
fore initiating our product line to identify and select the
products and features that meet the goals specified in
the business case. Product-line architectures include the
specification of a set of appropriate variation points for
producing and configuring different products. This vari-
ability constitutes a powerful mechanism before product

derivation which makes easy the evolution of the prod-
ucts over time. The definition of the variation points,
variants and dependencies must be carefully planned in
order to avoid incompatible versions at the end of the
product-line.

Classic feature models can be used for establishing a
category of dependencies for distributions (similar to the
way described in [6]. After that, some of those depen-
dencies can be isolated and broken, in order to reduce
the problem space and keep the increasing number of
dependencies more stable. An analysis of existing de-
pendency graphs should be carried out to analyze which
links can be broken. In addition, variability must be in-
troduced at a high level to reduce the dependencies dur-
ing compilation or installation procedures.

3. Challenges for libre Product-Lines

In this position paper we have presented some of the
problems of Linux-based distributions that may be tem-
pered by adopting a product line approach. At present
time there are many problems to be tackled and many
solutions that can be explored. Improving the quality of
Linux distributions implies certain changes at the archi-
tecture level to make them more flexible and adaptable.
In addition, the aim of these new challenges is to re-
duce the enormous effort spent in their maintenance and
evolution. In this work we identify, as a future research
agenda, some key problems and research issues when
adopting a product-line architecture-centric approach.

e Problem/Issue 1: Organizational issues of Linux
product lines.

e Research goal 1: It seems interesting to study how
typical organizational issues of product lines affect
to Linux OSS contributors, that is how domain and
application engineering teams should work.

e Problem/Issue 2: Scoping a Linux product line.

e Research goal 2: We need to re-examine the num-
ber and type of packages in Linux distributions to
re-organize large product-lines into smaller ones as
a way to make them more manageable and main-
tainable. Smaller but related product-lines add a
multi-dimensional facet to the development pro-
cess. This issue will impact on organizational and
costs problems that have to be treated accordingly
to the definition of the product-line.

e Problem/Issue 3: Linux distributions as a product-
line architecture (PLA).

e Research goal 3: The design of a suitable PLA
for Linux-based systems is a key goal in which we
need to specify the variability (where and how) in
the architecture. The definition of good PLAs will
have a strong impact in maintenance and evolution.
Also, the flexibility of the future architecture has
to be analyzed to predict better future changes or
new product configurations. In addition, the sepa-
ration of concerns of the Linux software architec-
ture should be analyzed to decouple the complexity
of such distributions.

e Problem/Issue 4: Binding time.

e Research goal 4: An analysis of which binding
times would be better to deploy and to re-configure
a Linux system is required to provide flexible and
configurable design choices and to increase the cus-
tomer satisfaction.

e Problem/Issue 5: Manage and visualize dependen-
cies among packages.

e Research goal 5: The management and visualiza-
tion of the many dependencies among packages is
not a trivial task, as the dependency graph may have
to consider multiple packages with transverse de-
pendencies or even loops. Some efforts towards
solving this problem can be found in [5]. After
visualizing the dependency graph, we need to an-
alyze how and where to break such huge depen-
dency clusters in order to decrease the complexity
of large Linux-based distributions. The type of the
packages to install can be used to categorize and vi-
sualize multi-faceted dimensions of the variability
and use these types to re-organize the dependency
network and to decouple the inter-dependencies
among packages.

These and other problems have to be addressed to
facilitate the development of Linux-based systems
as well as to estimate the effort with respect to other
traditional development practices. The aforemen-
tioned research goals are proposed a basic research
agenda to improve the development and evolution
of libre software in the long term.

4. Other related work

There is some previous work that is related to our
proposal besides the literature that has been referenced
so far. Regarding the study of GNU/Linux distributions,
it has been a field of study for some time now. For

instance, in [9], the releases of the Debian distribution
have been studied for the last eight years. One of the
findings of this research was that the size (in SLOC) of
Debian is doubling with each new release, another evi-
dence of its rising complexity.

The dependency problem in software distributions
has been already addressed in [2, 8]. Here the approach
is slightly different, as it is based on components and the
goal is to have a tool to be used by distribution editors,
who select components from a repository to create the
distribution.

In [11], the authors discuss the notion of variability
and they suggest a method for managing variability in
software product lines. Variability can be realized at dif-
ferent binding times by means of different implementa-
tion mechanisms, such as suggested in [3]. The afore-
mentioned method for managing variability [11] con-
sists of four steps ans uses feature diagrams for describ-
ing the variation points. Different properties for varia-
tion points are defined. The feature graph defines the
relationships and dependencies between variation points
and variants. Related to this, in [6] the authors use a
feature-oriented approach for modeling different types
of dependencies for product line component design. Up
to seven types of dependencies are defined for describ-
ing different types of relationships between the elements
of the features tree. Feature dependencies are used for
modeling different product configurations. Commonal-
ity and variability analysis becomes here a key technique
for identifying common features among the assets we
want to develop.

5. Summary and further work

In this paper we have stated that problems may arise
in Linux-based distributions when the number of pack-
ages and dependencies grow exponentially and there are
no mechanisms to lower the complexity. The scalabil-
ity, maintenance and evolution for the future can be se-
riously compromised. We have identified this especially
for dependencies among packages, as the growth of the
number of dependencies is bigger than the one of soft-
ware packages.

To address this problem we propose to use variability
modeling techniques for a subset of packages and sub-
stitute some of the dependencies by appropriate varia-
tion points. A category of dependencies based on a fea-
ture model has to be defined and also, how this classi-
fication can be extended to the variety of packages. A
high level description of the feature model with the vari-
ations points is planned to be introduced. This variabil-

ity should be defined according to a product-line context
under which products are delivered.

Finally, one of the expected benefits of this approach
is to decrease the time to market for distributions by
making them more maintainable.

References

[1] J. Boch. Design & Use of Software Architectures. Adopt-
ing and Evolving a Product-Line Approach. Addison-
Wesley, 2000.

[2] J. Boender, R. D. Cosmo, B. Durak, X. Leroy,
F. Mancinelli, M. Morgado, D. Pinheiro, R. Treinen,
P. Trezentos, and J. Vouillon. News from the EDOS
project: Improving the maintenance of free software dis-
tributions. In Proceedings from Intl track of WFS 2006
Porto Alegre, Porto Alegre, Brazil, May 2006.

[3] C. Fritsch, A. Lehn, and T. Strohm. Evaluation variabil-
ity implementation mechanims. Proceedings of Interna-
tional Workshop on Product Line Engineering The Eraly

Steps, PLEES2002, pages 59-64, Nov. 2002.

[4] D. M. German. Using software distributions to under-
stand the relationship among free and open source soft-
ware projects. In MSR, page 24, 2007.

[5] D. M. German, J. M. Gonzdilez-Barahona, and G. Rob-
les. A model to understand the building and running
inter-dependencies of software. In WCRE, pages 140-

149, 2007.

[6] K. Lee and K. Kang. Feature dependency analysis for
product line component design. Proceedings of the Sth
International Conference on Software Reuse, ICSR2004,
LNCS 3107:69-85, 2004.

[7]1 F. Mancinelli, J. Boender, R. D. Cosmo, J. Vouillon,
B. Durak, X. Leroy, and R. Treinen. Managing the
complexity of large free and open source package-based
software distributions. In Proceedings of the Auto-
mated Software Engineering Conference, pages 199-
208, 2006.

[8] F. Mancinelli, J. Boender, R. Di Cosmo, J. Vouillon,
B. Durak, X. Leroy, and R. Treinen. Managing the com-
plexity of large free and open source package-based soft-
ware distributions. In 275t IEEE/ACM IASE, pages 199—
208, Tokyo, Japan, Sept. 2006.

[9] G. Robles, J. M. Gonzalez-Barahona, M. Michlmayr,
and J. J. Amor. Mining large software compilations
over time: Another perspective of software evolution.
In Third International Workshop on Mining Software
Repositories, pages 3-9, Shanghai, China, May 2006.

[10] G. Robles, J. M. Gonzédlez-Barahona, and
M. Michlmayr. Evolution of volunteer participa-
tion in libre software projects: evidence from Debian. In
st International Conference on Open Source Systems,
pages 100-107, Genoa, Italy, July 2005.

[11] J. van Gurp, J. Bosch, and M. Svahnberg. On the notion
of variability in software product lines. Proceedings of
the IEEE WICSA 2001, pages 45-54, 2001.

