
An Empirical Approach to Software Archaeology∗

Gregorio Robles, Jesus M. Gonzalez-Barahona, Israel Herraiz
GSyC, Universidad Rey Juan Carlos (Madrid, Spain)

{grex,jgb,herraiz}@gsyc.escet.urjc.es

Abstract

The term “software archaeology” provides a useful
metaphor of the tasks that a software developer has to
face when performing maintenance on large software
projects. The source code of a program at any point in
time is the result of many different changes performed in
the past, usually by several people, which can be tracked
when a version control system is used. We have designed
a methodology for analyzing with detail the age of the
source code in such cases, and have applied it to several
large software projects. As a part of the methodology,
we define a set of indexes which can help to character-
ize the history of a software system, and discuss how
those could be used to estimate its past and future main-
tenance. We also show how our approach to software
archaeology is simple both conceptually and computa-
tionally, but still very powerful in uncovering useful in-
formation.

Keywords: software archaeology, software main-
tenance, software evolution, empirical analysis, libre
software

1. Introduction

Although the concept of software archaeology1 [12]
is not new neither unknown to the software engineering
community, there have been very few studies from this
point of view, and up to now archaeological empirical
analysis have been very rare.

The idea of applying the concept of archaeology to
software maintenance can be tracked at least to the OOP-
SLA 2001 Workshop on Software Archeology which

∗This work has been funded in part by the European Commission,
under the CALIBRE CA, IST program, contract number 004337, by
the Universidad Rey Juan Carlos under project PPR-2004-42 and by
the Spanish CICyT under project TIN2004-07296.

1In American English ‘archeology’. The term comes from the
Greek meaning ‘ ��������� �
	 ’ (ancient) and ‘ � ´���
�
	 ’ (word/speech).

was organized by Ward Cunningham et al. The first of
the assumptions proposed for the workshop is in fact the
rationale for using the archaeology concept in software
comprehension:

“[Software] [a]rch[a]eology is a useful
metaphor: programmers try to understand
what was in the minds of other developers
using only the artifacts left behind. They
are hampered because the artifacts were not
created to communicate to the future, because
only part of what was originally created
has been preserved, and because relics from
different eras are intermingled.”2

Software archaeology has been generally used for
large old (legacy) systems, but it is valid for any type of
software with independence of its age and size. While
maintaining a given piece of software, developers have
to understand source code that has usually changed
many times in the past, producing a result which is the
addition of all those changes. If the code is stored in a
version control system, its complete history is available,
and can be analyzed with appropriate tools. In this pa-
per, we will focus on the analysis of such a history from
a macro point of view, gaining knowledge of the histor-
ical structure of a system as a whole, the same way that
archaeologists gain knowledge of the history of an an-
cient city by studying what remains from the different
constructions built in it.

In the case of libre (free, open source) software3 this
kind of knowledge can be specially important, since due
to the usual lack of design [24], maintenance is an ac-
tivity even more important than usual. In this respect,
the age of the lines to be changed for a given main-
tenance activity is important. For instance, fragments

2http://www.visibleworkings.com/archeology/
3Through this paper we will use the term “libre software” to refer

to any code that conforms either to the definition of “free software”
(according to the FSF) or “open source software” (according to the
OSI).



of code which are too ‘old’ (remain in the system from
early stages in the development process) are less main-
tainable, since the developers that coded them may not
be part of the team anymore [9]. Therefore, in this case
knowing the amount of code which was modified for the
last time by developers that are no longer active in the
project will be important to estimate the degree of dif-
ficulty of the maintenance process. And this is just an
example of the kind of useful information that archaeol-
ogy can provide.

For studying projects from this macro-archaeology
point of view, we have designed a methodology, which
is presented in this paper, and a set of tools to automate
it. The methodology starts by determining, using infor-
mation from the version control system, when and who
modified for the last time each line of code. Then, the
information for all lines is considered to calculate sev-
eral indexes which provide useful information about the
age of the code, the activity of developers in the past, the
level of changes (maintenance), etc. Using this informa-
tion we may also be able to estimate how much effort
new changes would imply.

As case examples of the use of the proposed method-
ology we have selected nine libre software projects,
most of which among the hundred largest libre soft-
ware applications included in the latest stable Debian
GNU/Linux release4.

The structure of this paper is as follows. The next
section shows the methodology we propose for data ex-
traction and analysis. After that, in section three, we
apply our methodology and discuss the results obtained.
The forth section introduces a set of indexes that we pro-
pose and discuss. Finally, before the conclusions we
have inserted two sections in which we present related
work, discuss the usefulness of our approach and sug-
gest further research directions that should be followed
in the future. As case studies we have selected nine li-
bre software projects which are described briefly in an
appendix.

2. Methodology

To define the methodology, we have considered soft-
ware projects that store source code in a version control
system (in particular, CVS, although it could be eas-
ily extended to some other). Fortunately, there are a
lot of libre and non-libre software projects in this situ-
ation: more than 10,000 projects hosted at SourceForge

4Debian GNU/Linux is one of the most representative distri-
butions, and probably the largest one. See details in http://
libresoft.urjc.es/debian-counting/sarge

in 2003 [11], or the 11 largest projects in Debian 2.2 [8]
satisfy this condition (all of them, except for Linux, use
CVS).

CVS stores information about every change in the
code. It features a specific option (‘annotate’) which
shows, for any line, the date and author of the last
modification. As an illustrative example, consider the
(slightly modified) excerpt of the information obtained
for the src/keymap.c file from Emacs:

[...]
1.33 (A 19-May-93):/* A char with (...)
1.33 (A 19-May-93): in a string (...)
1.33 (A 19-May-93): character. */
1.1 (A 06-May-91):extern Lisp_Object m;
1.1 (A 06-May-91):
1.55 (B 16-Jan-94):extern Lisp_Object V;
1.55 (B 16-Jan-94):
1.209(C 25-Oct-00):/* Hash table (..) */
1.209(C 25-Oct-00):static Lisp_Object w;
[...]

The structure of this output (which will be called ‘an-
notated file’) is as follows. The first column shows the
file revision in which the current content of this line was
introduced. The string in parenthesis corresponds to the
username (in this example, A, B, C) and the date of the
last commit. Finally, the current content of the line is
found.

The process starts by obtaining, for every source file
in the current snapshot of the software, the correspond-
ing annotated files. They are stored and parsed. Source
files are identified by applying certain heuristics on the
file names (for instance, those ending in .c are supposed
to be C source files). For considering just code, blank
lines and comments are removed also using some other
heuristics. In addition, we run some error-correction
routines which check for common errors found when
mining data from CVS. For instance, some lines show
dates which do not correspond to reality, probably due
to a temporary misconfiguration of the server clock (this
happened in 8 lines from Evolution and 235 from The
GIMP). In those cases, we interpolated the dates consid-
ering those of the previous and the next versions. An-
other case is related to branches, which are considered as
having the next major version number. This happened,
for instance, for 37 lines (affecting 9 files) in the Mozilla
project, with a total of about 3.5 millions of lines.

Once the annotated files have been parsed, and the
mentioned heuristics applied, the resulting data is nor-
malized and inserted into a database, which will be later
queried for getting statistical information. This process

2



is performed by a set of scripts which are also responsi-
ble for the generation of the kind of graphs shown in this
paper.

The whole process, from source code retrieval to sta-
tistical analysis and graph generation, can be automated.
We have built a tool which groups all the scripts for this
task, DrJones, which is available as libre software5. This
way other research groups have the possibility to use and
enhance it.

2.1. Discussion and limitations of the methodol-
ogy

The approach we have presented has the limitation of
being only applicable to software projects which provide
over a versioning system. If the project to analyze does
not make use of one, but we have the historic versions
of it (and the dates of their release), there exists the pos-
sibility of building a versioning system from them. This
process can be automatized, although some information
from the original analysis will be missing as for instance
the real date of the modification of lines (which will be
set to the one where the release took place) or informa-
tion regarding authorship.

Other problems arise because of certain characteris-
tics (or lack of them) in the versioning system. For in-
stance, in CVS there exists no way for the CVS client
to move files from one directory to another, so users
have to delete and create a file again in the new loca-
tion which actually makes our software archaeology ap-
proach error-prone. Newer versioning systems, such as
Subversion, do not have this problem.

Finally, a third limitation is the insertion of external
code, where vertical lines appear for some projects (as
we will see for some of the case studies). This inserts
errors in the analysis regarding the date and authorship.
On the other hand, although the starting date of this code
is not accurate it is code that has to be maintained, so this
limitation should not be that problematic.

We have verified our heuristics for filtering lines of
code by computing the source lines of code with David
Wheeler’s SLOCCount6, a widely tested tool that has
been used in previous studies [8, 10]. The figures pro-
duced by SLOCCount have been compared with the
number of lines obtained with our procedure, showing
low enough differences to consider our approach suffi-
cient (see table 1 for details).

5http://libresoft.urjc.es/index.php?menu=Tools&Tools=DrJones
6We use the ‘–duplicates’ option which counts duplicated files

twice as our tools, contrary to SLOCCount, do not filter them
out. SLOCCount is available at http://www.dwheeler.com/
sloccount

3. Case studies

We have applied the described methodology to nine
projects from the libre software world (the rationale for
this selection is discussed in appendix A). They show a
great variety from many points of view (age, size, com-
plexity, number of developers, etc.), but all of them are
included in major GNU/Linux distributions, which is an
evidence of their popularity. In total, our case studies
sum up to 9.5 millions lines of code, written mainly in
C and C++, and 52,975 analyzed source code files. Ta-
ble 1 presents the most important facts about the code
considered.

The results of applying the methodology are pre-
sented in the following subsection.

3.1. Remaining lines

Figure 1 shows how many lines remain untouched
since any past date for all the projects. Time is repre-
sented in the horizontal axis, while the remaining lines
for any given date are found in the vertical one. It can
also be understood as a curve showing, for each date,
the number of lines that are older than it. Hence, peri-
ods without maintenance activity (i.e. projects with no
changes) would show an horizontal line. This is almost
the case for Apache 1.3 (at the bottom of the figure), but
not for the rest of the projects which show linear (as for
instance Mozilla) or super-linear (for instance Emacs)
trends.

Notice, in any case, that super-linearity in this fig-
ure does not mean that the growth of the project is also
super-linear: the number of remaining lines is the sum
of changed and aggregated lines.

Figure 2 shows the same information, but now the
curves are relative to the size of each project. The hor-
izontal axis is still time, while the vertical axis now is
measured in percentages (being 100% the current size
of the project). In it we can read, for each point in time,
the fraction of code that remains from the past.

Interestingly enough, the code in all projects is no-
toriously young. Besides Apache 1.3, at least half of
the code in all of them is younger than 5 years, as can
be seen with more detail in table 2 (where we show, as a
complement to figure 2, when 30%, 50% and 80% of the
current code is present). Even the code base for Emacs,
which we had selected as a legacy system, has a large
fraction (up to 70%) which is less than 7 years old.

Apache 1.3 has to be considered separately, since de-
velopers are now focused on Apache 2.0, where the main
development effort is taking place. However, we ex-
pected that at least some corrective maintenance effort

3



Project Start Vers. 1.0 Oldest line SLOCs SLOCCount Percent. Files Authors
Emacs (1976) 1985 May 85 974,407 991,552 98.3% 1,522 136
GCC 1985 1987 Sep 97 2,191,764 2,262,632 96.9% 22,349 218
Wine 1993 - Oct 98 1,033,318 984,710 104.9% 2,201 2
GTK+ 1994 Apr 98 (Dec 97) 387,413 389,723 99.4% 839 114

The GIMP 1994 Jun 98 (Dec 97) 548,410 552,473 99.3% 2,244 71
Apache 1.3 1995 Jun 98 Feb 96 82,909 85,758 96.7% 269 51

kdelibs 1997 Jul 98 May 97 605,528 613,742 98.6% 3,131 363
Evolution 1998 Dec 01 May 98 205,278 207,069 99.1% 816 79
Mozilla (1998) Jun 02 (Apr 98) 3,414,387 3,510,691 97.3% 19,604 567

Table 1. Summary of the case studies. Columns contain the project name, the year the project
started its development, the date of its release 1.0, the number of SLOCs according to our
methodology, the number of SLOCs according to SLOCCount, the coincidence for both figures,
the number of files, and the authors identified in the current version.

Figure 1. Remaining lines (absolute val-
ues)

would be happening in 1.3, even if adaptative or per-
fective maintenance [27] is not performed. But at least
since 2003 that does not seem to be the case.

In the other end of the spectrum, with most of the
code being really new, we find GCC, Evolution, GIMP
and Wine. in all these cases, this is due, probably, to
recent refactorings of the code, including structural and
organizational changes.

From another point of view, these graphs may be seen
as estimators for future maintenance effort. Software
with a high amount of ‘old’ lines of code is more dif-
ficult to maintain as authors may forget the rational of
the changes or they may even be not more part of the
project. In the next subsection we will study this with

Figure 2. Remaining lines (relative values)

some more detail.

3.2. Remaining contributions from authors

Figure 3 shows the percentage of lines authored by
developers not part of the project anymore. We will
call those lines ‘orphaned lines’, because in some sense
their author seems to be no longer present. For instance,
projects that do not lose their developers will have lit-
tle orphaned lines for the whole duration of the devel-
opment, and therefore will show almost shapes close to
horizontal. On the other hand, projects which have suf-
fered a high loss of authors will have steep curves.

This figure has a clear relationship with the availabil-
ity of knowledge within the project. Those projects los-
ing developers will also experiment the loss of their ex-

4



Project 30% 50% 80%
Emacs Jun 99 (69) Apr 00 (59) Jan 03 (26)
GCC Nov 01 (40) Jul 03 (19) Jul 04 (8)
Wine Jul 02 (32) May 03 (21) Jul 04 (8)
GTK+ Jul 00 (56) Jun 01 (45) Aug 03 (19)

The GIMP Nov 01 (40) Sep 03 (17) Sep 04 (6)
Apache 1.3 Nov 97 (88) Jun 98 (81) Jun 00 (57)

kdelibs May 01 (46) May 02 (34) Dec 03 (14)
Evolution Apr 02 (35) Nov 03 (15) Jul 04 (8)
Mozilla Apr 00 (59) Sep 01 (42) Sep 03 (17)

Table 2. Date when 30%, 50% and 80% of
the code in March 2005 is already present.
Numbers in brackets are months passed.

pertise about the system, which will have an impact on
future maintenance efforts. It is not the same to main-
tain and enhance a system having the original authors in
the team than having newcomers which have to embrace
a software comprehension process before they become
productive.

The curves in this figure have many steps since they
are related to the whole amount of lines contributed by
‘active’ developers at any time. Hence, when a devel-
oper leaves the project we see a vertical line, longer or
shorter according to his past contributions. It is remark-
ably, for instance, the case for Emacs in November 2003,
when Richard Stallman (the original author) contributed
his last change.

It can also be shown how values in this figure have
to be below those in figure 2, since the remaining lines
for a developer are dated as of his last contribution, and
not as of their own date (which has to be in any case
previous to the last contribution).

Table 3 helps in the understanding of figure 3 by pre-
senting the 30% and 50% values of orphaned lines. .

4. Indexes

We have shown so far that an empirical approach to
software archaeology uncovers a good deal of data. To
get useful information from it, it is convenient to use
some parameters that help to characterize the history of
the project from this point of view. This is the reason
why we have defined some indexes that may help to in-
fer some properties of the corresponding development
and maintenance process. This proposal goes in the
same direction than the Maintainability Index proposed
by Oman et al. [16], which has been applied recently by
Samoladas et al. to libre software [23].

Figure 3. Orphaned lines in time (relative)

Project 30% 50%
Emacs Nov 03 (16) Jul 04 (8)
GCC Feb 05 (1) Mar 05 (0)
Wine Mar 05 (0) Mar 05 (0)
GTK+ Jan 04 (13) Feb 05 (1)

The GIMP Mar 05 (0) Mar 05 (0)
Apache 1.3 Nov 97 (88) Jun 98 (81)

kdelibs Jul 04 (8) Mar 05 (0)
Evolution Jul 04 (8) Mar 05 (0)
Mozilla Oct 02 (29) Jul 03 (20)

Table 3. Date when 30% and 50% of the
code has an author which will make no
more changes until March 2005. Numbers
in brackets are months passed.

4.1. Definition of the indexes

• Aging (measured in SLOC-month). It is a direct
measure of how much the software is aging. It can
be calculated as the area under the curve in figure 1.

Aging =

N−1∑

n=1

linesn (1)

where n is the month number, being n=1 the first
month of the project and N the current one. Notice
that the last month is not taken into account.

This index is defined after Parnas’ well-known soft-
ware aging [17] concept, although we only have in mind
one of the factors. If we would stick to Parnas’ origi-
nal definition of aging, then we should take into account

5



changes performed on the system, and not only that the
software gets old as humans do. We lack this informa-
tion in archaeological studies, but other methods could
be implemented to extract the required data from a ver-
sioning system and end up with a metric that would fit
the original definition more accurately.

In any case, our aging index gives an idea of how
‘old’ a software system has become, but it does not
provide much information about how much it has been
maintained, neither about how easy it will be to maintain
it in the future. In addition, the SLOC-month figures are
difficult to be compared from project to project, as it can
be seen in table 4. This leads us to the definition of rel-
ative aging.

• Relative aging. This index makes it possible to
compare the aging for several projects. It is mea-
sured in months and can be obtained from follow-
ing equation:

RelativeAging =
Aging

linesN

(2)

where N is the last month considered.

Relative aging represents the amount of time neces-
sary to have the same aging, had the project started with
the current number of lines. Of course, it can also be un-
derstood as the number of months needed to double the
current aging of the project if the system is not touched
anymore.

• Relative 5-year Aging: relative size to itself as if
the project were 5 years old.

Rel5yA =
Aging

60 · linesN

(3)

where N is the last considered month

Relative 5-year aging allows for easier comparison,
defining 5 years as the moment for a system to become
‘old’. It is also a needed step for defining the absolute
5-year aging index (which will be presented later).

• Progeria7. As relative aging measures the amount
of time needed to double the aging value, we can
compare it to the amount of time needed to double
the code base.

Progeria =
RelativeAging

50%ofCurrentCode
(4)

7Progeria is a genetic condition which causes physical changes that
resemble greatly accelerated aging in sufferers. Source: WikiPedia

Values of progeria lower than 1 are indicative of ac-
tive maintenance. Projects featuring those indexes have
not to fear the consequences of high values of aging.
However, values above 1 imply that aging is growing
more than software maintenance activity and therefore
are prone to showing more and more problems.

So far we have only considered aging to find out how
old the system is, or how old it will get. But we have not
found a value that shows how maintainable the system
is. The fact that for previous indexes we have considered
factors relative to the software size itself can be confus-
ing, as systems that are by far larger may have values
which make them be ‘younger’ than much smaller sys-
tems and thus easier to maintain. This means that those
indexes cannot be taken as estimators of the effort by de-
velopment teams taking over the software maintenance
process.

Therefore, we propose a new index that provides a
value relative to a fixed-size and a fixed-time software
system. This will enable comparison among projects.

• Absolute 5-year aging: relative size as if the
project had 100 KSLOC and had been started 5
years (60 monthts) ago. Serves for comparison pur-
poses among projects.

Abs5yA =
Aging

60 · 100K
(5)

where N is the last considered Month.

So far, we have considered only indexes related to
source code, but software archaeology provides also in-
formation related to the authors. Indexes up to the mo-
ment did not consider changes in the development team.
There is some research considering those changes, such
as the quantification of the half-life [22] of the core team
for some libre software projects (defined as the time re-
quired for a certain group of contributors to fall to half
of its initial population).

One of the limitations of the following indexes is that
the curves from which they are inferred are, contrary to
those shown previously, not continuous with time, which
may imply some undesired behaviours.

In the line of the aging index we can infer from fig-
ure 3 a similar index for those lines for which their au-
thor already left the project.

• Orphaning (in lines-month): gives the amount of
lines that prevail from developers that are not active
in the project anymore, multiplied by the number of
months of inactivity.

Orphaning =

N−1∑

n=1

linesn (6)

6



where n is the month number, being n=1 the first
month of the project and N the current one.

As for the aging values, the orphaning values are dif-
ficult to compare from project to project. We could cal-
culate relative indexes as we have done for source code
lines above, but since they depend on the same values,
having a factor should be sufficient for doing transfor-
mations.

• Orphaning factor: the number of lines-month
given by the orphaning index is by definition equal
or smaller than the aging of the system. It can be
seen as the fraction of old code wrote by developers
not participating in the project anymore.

OrphaningFactor =
Orphaning

Aging
· 100 (7)

We multiply it by 100 in order to have it in percent-
ages.

The orphaning factor may be seen as an index that
shows how much of the existing code is supported by
its original authors. Low values mean that the develop-
ment / maintenance team is still available in the project.
This ensures continuity and is indicative of lower main-
tenance costs (compared to the situation where it is to be
maintained by newcomers).

The orphaning factor should be used with care. A first
impulse would be to multiply it by the absolute 5-year
aging (Abs5yA) in order to obtain an index that com-
bines maintainability and current expertise of the team.
This would be misleading, throwing for instance GCC
a similar value as to Apache. The fallacy is due to the
fact that by doing this we assume that authors dispose
over an unlimited memory and remind all additions and
changes despite the time that has passed. This, of course,
cannot be considered for large systems and for long de-
velopment/maintenance periods.

4.2. Application to the case studies

Once the indexes have been defined, we can study
them in our case examples (see table 4), and comment
some particular cases.

From this table it can be seen how the aging index
is not quite useful for comparison purposes (although
it gives a good idea of the absolute aging). However,
relative aging allows for those comparisons. We can see
in the corresponding column of the table a summary of
the information in figure 2. Apache and Emacs are the
systems with the highest relative aging. Evolution, Wine

and The GIMP have values in the 20s, which mean that
they are still in actively maintained.

With respect to progeria, it can be said that it shows
how Mozilla balances aging and evolution (that’s why it
appears in Figure 1 as a linear function), while there are
four projects which are becoming old systems: Apache
and Emacs (which at this stage of the analysis is not sur-
prising at all), but also GTK+ and kdelibs.

The absolute 5-year aging depends on the size, and
has been presented as a proxy of maintainability. It
shows that Apache, even having high progeria and ag-
ing is still more friendly to be maintained than the rest
of systems (except for Evolution) because of its small
size. Emacs and GCC, even having the latter two times
the size of the former, have similar values, while GTK+
and GIMP also show this behaviour.

While the orphaning index helps little in comparing
projects, the orphaning factor provides very useful infor-
mation. It shows small values for GCC and Wine, very
high values for Apache and Mozilla, and medium values
(around 25% to 35%) for the rest of systems). This may
give an idea of how much experience the current team
has with the system.

5. Related work and discussion

The use of historical data from software development
is not a new topic for the software engineering commu-
nity. But most of the approaches that have used such
data have focused on evolutionary aspects [3, 15], or on
looking at the reasons for the most common behaviours
found in a software development project [15]. Of course,
availability of the source code as well as public access
to software tools used during the development process
in libre software projects have made them gain attention
recently, and some methods have already been proposed
to automate these processes [5, 21].

In addition, evidence has been found [10] that the
amount of available libre software, measured in source
lines of code, gets doubled around every two years. This
means that the code base to be maintained grows steadily
in time and that bigger efforts have to be taken into con-
sideration.

In this context, we have presented a brief introduction
to why software archaeology may be useful in relation
to software maintenance and software evolution. Further
research has to be performed in order to see what other
information can be obtained from such an analysis and
how it can be connected to ’classical’ analysis.

Specially interesting are the limitations of the current
approach for software archaeology, and how we can con-

7



Project Size Age Aging Rel. Aging Rel5yA Progeria Abs5yA Orphaning Orph Factor
Emacs 974,043 239 62,419,261 64.1 1.07 0.93 10.40 18,585,711 29.78
GCC 2,188,033 91 65,558,122 30.0 0.50 0.65 10.93 3,427,811 5.23
Wine 1,028,820 78 26,926,319 26.2 0.44 0.80 4.49 1,521,212 5.65
GTK+ 387,333 88 16,938,898 43.7 0.73 1.04 2.82 5,218,899 30.81

The GIMP 540,540 98 16,002,332 29.6 0.49 0.59 2.67 3,595,296 22.47
Apache 1.3 82,909 110 6,161,847 74.3 1.24 1.10 1.03 3,290,623 53.40

kdelibs 604,888 95 20,089,807 33.2 0.55 1.04 3.35 5,023,152 25.00
Evolution 204,951 99 4,796,800 23.4 0.39 0.66 0.79 1,665,455 34.72
Mozilla 3,786,735 84 161,394,929 42.6 0.71 1.00 26.90 90,902,668 56.32

Table 4. Archaeology indexes for our case studies. Size is given in SLOC, Age in months, Aging
and Orphaning in SLOC-month, Relative Aging in months, Progeria, Rel5yA and Abs5yA are
indexes and the Orphaning factor is given in percentage.

nect it with the more mature view of software evolution.
Also, we foresee promising lines related to cost estima-
tion, and present some final remarks about some infor-
mation that we have gathered but not analyzed yet.

5.1. Relationship with software evolution

The laws of software evolution [13] have some rela-
tionship to the archaeology concept: the former consid-
ers the total history of the project starting from the first
time the software is publicly released, while the latter is
only interested in what remains from the past. Godfrey
et al. [7] studied, from this point of view, a libre soft-
ware project (Linux) and found that it did not follow at
least one of the software evolution laws, as its growth is
super-linear. But evolution is only one side of the coin,
and maintainability has also to be taken into account.
In this sense, a study by Schach et al. [25] looked at
the maintainability of the Linux kernel over several ver-
sions in time, throwing as a result that the dependencies
of Linux may make it difficult to maintain in the near
future.

Other works that have applied similar ideas come
from the re-engineering area. For instance, the Yes-
terday’s Weather [6] method looks at the most recent
changes applied to a system, considering that recently
changed parts are those more likely to change in the near
future [26]. In comparison to software archaeology, this
is like taking into account only the last months of devel-
opment.

Further research should be performed in order to see
how to relate both views. Does any kind of transfor-
mation exist between software evolution and software
archaeology? What additional information is necessary
for such a transformation?

5.2. Cost estimation

Ramil et al. [20, 19] have already performed some
research on effort estimation based on change records
of evolving software. Software archaeology and the in-
dexes that we have presented so far may also be used as a
starting point for the estimation of future software main-
tenance and evolution costs. The key ideas for walking
that path are:

• A piece of software on which an author worked re-
cently is (for him) easier to maintain than other in
which he worked long ago.

• Maintaining software with which an author has
never dealt is more difficult than if he has already
worked on it.

• Having the possibility of asking the original author
of some code to be changed makes life easier than
when that developer is not available anymore.

6. Conclusions and further research

In this paper we have presented an empirical appli-
cation of the archaeology concept to the macro study
of projects maintained in version control systems, with
special attention to libre software projects. We have de-
vised a methodology for that study, from which we have
defined several indexes which can be used to summarize
the development process from the point of view of ag-
ing and maintenance. We have also built some tools that
automate the analysis, and applied them to nine care-
fully selected libre software projects. To finish, we dis-
cussed some limitations and needed complementary re-
search lines.

8



One of the key findings of this work has been to
show that the application of the methodology to the case
examples has provided much insight about the mainte-
nance efforts, and the maintainability of the correspond-
ing projects. Finding, for instance, that projects consid-
ered as legacy (such as Emacs) has around 70% of the
code younger than 7 years, or that Apache 1.3 is sel-
dom maintained even being the most used WWW server
worldwide nowadays.

From a more general point of view, the characteriza-
tion of a project by several indexes that contribute with
useful information about its age and maintainability is
probably the key contribution of our work and may help
in the decision-taking process by the development teams
in libre software projects or by the management team in
industrial software companies.

There are many possible future lines of research to
explore this approach. First of all, we are looking for
better ways of visualization of the archaeological results
from a macro point of view. We are also interested in
finding relationships with the parameters used in soft-
ware evolution studies, and in correlating them with ef-
fort estimation. In a more deep line, we are interested in
characterizing the continuous release process, common
in libre software projects, identifying its developments
and maintenance parts, and relating them to other fac-
tors.

Some other quantitative approaches could also lead to
interesting results from a software archaeology point of
view. Among them, studying how the changes in docu-
mentation and in-line comments affect the maintenance
process, and even simply repeat the same analysis pre-
sented in this paper for comments in code.

As a summary, we believe that software archaeology
provides an interesting framework for digging in the past
of a project, so that we can learn patterns and informa-
tion relevant to infer its future.

References

[1] R. Ferenc, I. Siket, and T. Gyimóthy. Extracting facts
from open source software. In Proceedings of the In-
ternational Conference in Software Maintenance, pages
60–69, Chicago, IL, USA, 2004.

[2] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking
systems. In Proceedings of the International Confer-
ence on Software Maintenance, pages 23–32, Amster-
dam, The Netherlands, September 2003.

[3] H. Gall, M. Jazayeri, R. Klösch, and G. Trausmuth. Soft-
ware evolution observations based on product release
history. In Proceedings of the International Conference
on Software Maintenance, pages 160–170, 1997.

[4] D. German. An empirical study of fine-grained software
modifications. In Proceedings of the International Con-
ference in Software Maintenance, Chicago, IL, USA,
2004.

[5] D. German and A. Mockus. Automating the measure-
ment of open source projects. In Proceedings of the 3rd
Workshop on Open Source Software Engineering, Port-
land, Oregon, 2003.

[6] T. Gı̂rba, S. Ducasse, and M. Lanza. Yesterday’s
weather: Guiding early reverse engineering efforts by
summarizing the evolution of changes. In 20th Interna-
tional Conference on Software Maintenance, pages 40–
49, September 2004.

[7] M. W. Godfrey and Q. Tu. Evolution in Open Source
software: A case study. In Proceedings of the Interna-
tional Conference on Software Maintenance, pages 131–
142, San Jose, California, 2000.

[8] J. M. Gonzalez-Barahona, M. A. Ortuño Perez, P. de las
Heras Quiros, J. Centeno Gonzalez, and V. Matel-
lan Olivera. Counting potatoes: the size of Debian 2.2.
Upgrade Magazine, II(6):60–66, Dec. 2001.

[9] J. M. Gonzalez-Barahona and G. Robles. Unmounting
the ”code gods” assumption. Technical report, 2003.

[10] J. M. González-Barahona, G. Robles, M. Ortuño Pérez,
L. Rodero-Merino, J. Centeno González, V. Matellan-
Olivera, E. Castro-Barbero, and P. de-las Heras-Quirós.
Analyzing the anatomy of GNU/Linux distributions:
methodology and case studies (Red Hat and Debian).
In S. Koch, editor, Free/Open Source Software Devel-
opment, pages 27–58. Idea Group Publishing, Hershey,
PA, USA, 2004.

[11] K. Healy and A. Schussman. The ecology of open-
source software development. Technical report, Univer-
sity of Arizona, USA, Jan. 2003.

[12] A. Hunt and D. Thomas. Software Archaeology. IEEE
Software, 19(2):20–22, 2002.

[13] M. Lehman, J. Ramil, P. Wernick, and D. Perry. Metrics
and laws of software evolution - the nineties view. In
Proceedings of the Fourth International Software Met-
rics Symposium, Portland, Oregon, 1997.

[14] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of Open Source software development: Apache
and Mozilla. ACM Transactions on Software Engineer-
ing and Methodology, 11(3):309–346, 2002.

[15] A. Mockus and L. G. Votta. Identifying reasons for soft-
ware changes using historic databases. In Proceedings of
the International Conference on Software Maintenance,
pages 120–130, October 2000.

[16] P. Oman and J. Hagemeister. Metrics for assessing a
software system’s maintainability. In International Con-
ference on Software Maintenance, pages 337–344, Los
Alamitos, CA, 1992.

[17] D. L. Parnas. Software aging. In Proceedings of the In-
ternational Conference on Software Engineering, pages
279–287, Sorrento, Italy, May 1994.

[18] J. W. Paulson, G. Succi, and A. Eberlein. An empir-
ical study of open-source and closed-source software

9



products. Transactions on Software Engineering, 30(4),
April 2004.

[19] J. F. Ramil and M. M. Lehman. Effort estimation from
change records of evolving software (poster session).
In Proceedings of the 22nd international conference on
Software engineering, page 777, 2000.

[20] J. F. Ramil and M. M. Lehman. Metrics of software evo-
lution as effort predictors - a case study. In Proceed-
ings of the International Conference on Software Main-
tenance, pages 163–172, 2000.

[21] G. Robles, J. M. Gonzalez-Barahona, J. Centeno-
Gonzalez, V. Matellan-Olivera, and L. Rodero-Merino.
Studying the evolution of libre software projects using
publicly available data. In Proceedings of the 3rd Work-
shop on Open Source Software Engineering, pages 111–
115, Portland, Oregon, 2003.

[22] G. Robles, J. M. Gonzalez-Barahona, and
M. Michlmayr. Evolution of volunteer participa-
tion in libre software projects: evidence from Debian.
In Proceedings of the 1st International Conference on
Open Source Systems, Genova, Italy, July 2005. To
appear.

[23] I. Samoladas, I. Stamelos, L. Angelis, and
A. Oikonomou. Open source software develop-
ment should strive for even greater code maintainability.
Communications of the ACM, 47(10), October 244.

[24] W. Scacchi. Free and open source development practices
in the game community. IEEE Software, 21(1):59–66,
2004.

[25] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller, and
A. J. Offutt. Maintainability of the linux kernel. IEE
Proceedings–Software, 149:18–23, 2002.

[26] S. D. Serge Demeyer and O. Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann, July 2002.

[27] E. B. Swanson. The dimensions of maintenance. In
Proceedings of the 2nd International conference on Soft-
ware Engineering, pages 492–497, 1976.

A. About the projects analyzed

Emacs is an editor written in LISP from the 1970s but
still very popular, although it was completely rewritten
by Richard Stallman in the mid 80s. We assume it can be
treated as a libre software legacy system, as it has been
in a mature state for around 20 years now.

GCC is the GNU Compiler Collection which con-
tains compilers for C, C++, Java, ADA, etc. Many enti-
ties are interested in the development of GCC and it has
had a complicated history with several forks and merges
of compilers, so large amounts of third-party code have
been imported to the repository. There have been previ-
ous studies on GCC [18].

WINE is the recursive acronym for WINE Is Not an
Emulator, although we could say it is a Windows em-
ulator for UNIX systems. Its most interesting charac-

teristic is that its development is not community-driven,
so a limited amount of developers from the company
who builds WINE have directly touched the repository.
Wine is the unique application considered which has not
achieve a 1.0 version.

The GIMP comes from GNU Image Manipulation
Program and is the most-known libre competitor of Pho-
toshop. It was started in the mid-90s by two students at
Stanford who left the project after releasing the 1.0 ver-
sion, but has been taken over by other developers and is
today a community-driven project. The initial import
into the current CVS happened December 1997 with
around 39,000 lines remaining.

GTK+ is the Graphical ToolKit developed for The
GIMP. It was taken over by the GNOME community
and serves since then as the graphical toolkit of the
whole GNOME desktop environment and not only of
The GIMP. This makes it specially interesting, as there
is a high number of projects which depend on it (in op-
position to The GIMP). The old code base from which
less than 18,500 lines remain today was imported into
the current repository in December 1997.

Apache 1.3 is the most-used HTTP server world-
wide. Although its development is frozen as the active
branch is the Apache 2.0 one, Apache 1.3 is still the most
used Apache version nowadays8. Apache has been the
target of several research studies [14, 18].

kdelibs contains the core libraries for the KDE desk-
top environment. It has been selected as it is a project
where a large quantity of developers have contributed to.
Although it is not a graphical tool kit as GTK+ (KDE
uses the Qt toolkit) it can also be seen as a project on
which many others rely on.

Evolution is a libre group-ware solution by Novell
which contains e-mail application, calendar, etc. It is a
case sample of a corporate-driven development that has
achieved to group a community around it. It has been
studied before in detail by German [4, 5].

Mozilla is a well-known Internet suite which groups
web navigator, e-mail client, etc. It is the libre soft-
ware successor of the Netscape Navigator suite and is
the canonical example for an application that has been
released to the community once an ample code base al-
ready existed. This happened in April 1998; almost
154,000 lines of code remain from then. It is also one
of the most studied libre software projects [1, 2, 14].

8Any of the Apache 1.3 versions is used by at least
50% of all httpd servers worldwide and over 66% of
all Apache servers installed. Source: Web Server Sur-
vey - Server Breakdown (published March 1st 2005):
http://www.securityspace.com/s survey/data/200502/servers.html

10


