
Evolution and Growth in Large Libre Software Projects∗

Gregorio Robles, Juan Jose Amor, Jesus M. Gonzalez-Barahona, Israel Herraiz
GSyC, Universidad Rey Juan Carlos (Madrid, Spain)

{grex,jjamor,jgb,herraiz}@gsyc.escet.urjc.es

Abstract

Software evolution research has recently focused on
new development paradigms, studying whetherlaws
found in more classic development environments also
apply. Previous works have pointed out that at least
some laws seem not to be valid for these new environ-
ments and even Lehman has labeled those (up to the
moment few) cases as anomalies and has suggested that
further research is needed to clarify this issue. In this
line, we consider in this paper a large set of libre (free,
open source) software systems featuring a large commu-
nity of users and developers. In particular, we analyze
a number of projects found in literature up to now, in-
cluding the Linux kernel. For comparison, we include
other libre software kernels from the BSD family, and for
completeness we consider a wider range of libre soft-
ware applications. In the case of Linux and the other
operating system kernels we have studied growth pat-
terns also at the subsystem level. We have observed
in the studied sample that super-linearity occurs only
exceptionally, that many of the systems follow a linear
growth pattern and that smooth growth is not that com-
mon. These results differ from the ones found generally
in classical software evolution studies. Other behaviors
and patterns give also a hint that development in the li-
bre software world could follow different laws than those
known, at least in some cases.

1. Introduction and research goals

The number of studies on software evolution is rel-
atively low, despite being a field opened more than 30
years ago. The lessons learned are many, and are sum-
marized in a set of laws, stated by Lehman, which have

∗This work has been funded in part by the European Commission,
under the CALIBRE CA, IST program, contract number 004337, in
part by the Universidad Rey Juan Carlos under project PPR-2004-42
and in part by the Spanish CICyT under project TIN2004-07296.

grown to eight in their latest version [17]. Theselaws
have been validated empirically with some large indus-
trial software projects. Recent research is exploring
whether they are applicable to other domains, such as
systems developed using eXtreme Programming mod-
els, based on the COTS paradigm, etc.

One of this ‘other’ domains is libre software1. Al-
though its basic difference with ‘traditional’ software
lies in the licensing terms, many argue that there are also
significant differences in the way they are built. For in-
stance, most of the procedures in libre software are open
and public, targeted to ease the followup and joining by
new developers, with the aim of forming a developer
community in which individuals can play several roles
(from core developers to casual bug report submitters).
Although there is some literature showing that projects
with a surrounding community are exceptions if we con-
sider the whole libre software landscape [13], they are
still the most notorious, larger in size and user popula-
tion, and those which have featured most attention by the
public, the industry and the research community (con-
sider for instance Mozilla [6, 18, 19], Linux [9, 19, 21],
Apache [18], GNOME [14, 8], or FreeBSD [4]).

For the study presented in this paper, we have con-
sidered exactly this kind of libre software projects: large
in size (at least in the order of 100K lines of code), and
with a large user and developer community. Our inten-
tion is to explore how they behave in the context of the
laws of software evolution, specially regarding software
growth. For this matter, we started by reproducing (with
current data) the classical study performed five years ago
on the Linux kernel [9], which seemed to question the
conformance of libre software projects to some of those
laws. Later, we extended the study by doing a similar
analysis on other libre software systems in the same do-
main (operating system kernels): the *BSD family. Fi-

1Through this paper we will use the term “libre software” to refer
to any code that conforms either to the definition of “free software”
(according to the Free Software Foundation) or “open sourcesoftware”
(according to the Open Source Initiative).

nally, we performed again the same kind of study for 18
other large libre software applications, in order to find
out whether the results found are general or not for this
domain.

In all these cases, we also had another goal in mind:
to look for differences in the evolution of the software
before and after the 1.0 release. Traditional software
evolution studies consider only releases after the first
one delivered to the customers (usually 1.0). However,
it is a common behavior in many libre software project
to follow the rule “release early, release often”, which
means that programs are available to the public well be-
fore they are considered stable, and that the first release
named “stable” is not that special. Therefore, it is diffi-
cult to find a point where “evolution” starts, so we stud-
ied (if available) the whole life cycle and hoped to find
the significance of the 1.0 release from our results.

The rest of this paper is structured as follows. The
next section references the previous work on software
evolution, including studies related to libre software.
The third section details the methodology used in the
presented study. After that, the main results of apply-
ing it to the Linux kernel and its subsystems are shown.
In the fifth section, the same is done for the family of
*BSD kernels, while the sixth one is devoted to discuss
whether the findings in those systems can be generalized
to other large libre software cases. In the final section,
some conclusions are drawn.

2. Previous research

Thirty years of research on software evolution have
resulted in a set oflaws, known as Lehman’s Laws of
Software Evolution [15]. Although the number of laws
has grown from three in the seventies to eight in their
latest version [17], all of them have been empirically
proved, by studying projects developed in traditional in-
dustrial software development environments.

One of the laws that is more related to the study we
are presenting is the Fourth Law [17], which states that
the rate of development over the life of a program is ap-
proximately constant, and independent of the resources
devoted to it. Both Lehman and a statistical study per-
formed by Turski [23] found that those software systems
follow an inverse square growth rate. The equation given
by Turski is:

Si = Si−1 + E/(Si−1)
2

whereSi is the estimated size of the system at the
i-th release (in number of source modules2) and E is a

2Although there is no precise definition of what a module is as it
varies from system to system, in general a module refers to anindivid-

parameter. An explanation that is given for this equation
states that for a system of sizen (modules), the maximal
number of possible interconnections isn · (n − 1). As
the system grows, introducing new modules will impact
a growing number of existing ones and more effort will
be required [16].

When solved directly, the equation is approximately
S = (3E · t)1/3

where S is the size of the system measured in mod-
ules, t is time and E a parameter.

In the specific field of libre software, there are some
research works from the point of view of evolution:
Burd et al. [1] evaluate the evolution of GCC, a compiler
collection written mainly in C; Capiluppi, alone or with
colleagues, has also authored several works about the
evolution of libre software projects [3] and has proposed
some models [2] (although those studies are focused on
small to middle-sized projects). However, the most rel-
evant study on the evolution of libre software projects is
probably the one by Godfrey and Tu [9], who studied the
Linux kernel in 2000. They found that Linux, then about
2 million lines of code in size, had a super-linear growth
rate, apparently in contradiction with Lehman’s Fourth
Law, and with the statistical evidence from Turski.

The main conclusions of this work can be summa-
rized as follows:

• The Linux kernel exhibits a super-linear growth
rate. Most of the growth is due to new functionality
and added hardware support, not to bug fixing.

• Much of the functionality (specially device drivers)
is complex and extensive, but also relatively inde-
pendent from each other, and from the rest of the
system.

• External contributions (both for adding and main-
taining code) were frequent in the devices and ar-
chitecture subsystems. Maintenance is often done
by third parties.

• Large parts of the kernel (specially device drivers)
do not require active maintenance, but are still
shipped with Linux just in case the user needs them.

• Fourth Lehman’s law of software evolution is pre-
sumably not fulfilled in the case of Linux.

In a later paper, the same authors propose the follow-
ing software growth equation, based on statistical anal-
ysis [10]:

y = 0.21 · t2 + 252 · t + 90, 055

ual source code file.

2

where y is the size in uncommented lines of code and
t the days since version 1.0. The coefficient of determi-
nation, calculated using least squares, has a value ofr2

= .997.
There is also a study by Succi et al. [22] about the

growth in libre software systems, which confirms this
super-linearity for the Linux kernel, but finds linear
growth for GCC and Apache.

Both studies have been considered by Lehman et
al. [16] as anomalies of the ‘laws’ of software evolu-
tion affecting libre software, at the same time that they
encourage further research on this topic. This paper fol-
lows that advice, providing further empirical insight in
that direction.

3. Methodology

The methodology used in this work is based on an-
alyzing source code publicly available on the Internet.
The code corresponding to every snapshot considered is
downloaded to a local directory, where its size is com-
puted. The results are stored in a database, which is later
used for plotting and performing a detailed analysis.

There are some differences with respect to which
kind of public repositories are used for obtaining the
source code, and which snapshots are considered, de-
pending on what is available for each project. Details
will be sketched below for the projects considered.

The size of each snapshot is obtained by using SLOC-
Count3, a tool which uses some heuristics to identify
files with source code (and the language in which they
are written), and to compute the number of physical
source lines of code (SLOC) they contain. For this pur-
pose, physical SLOC are defined as “a line that finishes
in a mark of new line or a mark of end of file, and that
contains at least a character that is not a blank space
nor comment”. SLOCCount is a mature tool that has
been used also for analyzing other systems, such as com-
plete GNU/Linux distributions with several dozens of
millions of source lines of code [11, 12].

In the case of the Linux kernel, there is no pub-
lic CVS repository available. Therefore we decided to
download release packages. All Linux releases are avail-
able in Linux mirrors, where they are packed as com-
pressed tar files. We got the official and experimental
kernel releases, from 1.0 to the last one published in
December 2004 (2.6.10). We have also measured those
known as “historic” releases, that is, those released prior

3SLOCCount has been developed by David A. Wheeler, and is li-
bre software. It is available fromhttp://www.dwheeler.com/
sloccount/.

to 1.0, although they are considered to be unstable, and
suffered from frequent reorganizations in the code base.

In order to recreate Godfrey’s study on the Linux sub-
systems, we did not only compute the number of source
lines of code for the whole system, but we also gath-
ered data from all main subdirectories (which we will
call subsystems from now on).

For all other systems considered in this paper, pub-
lic CVS repositories are available. In libre software
projects, it is common practice that even being unsta-
ble, the software in the repository can be compiled and
is usable, up to the point that automatically generated
nightly-builds are offered in many cases, i.e. it is not
in a state of flux. Releasing a new version of the soft-
ware consists usually in taking one of this snapshots and
assigning it a specific release name/number, although
some projects have more sophisticated procedures [5].

Taking these facts into account, we retrieve monthly
snapshots from the CVS repositories, starting by the
time the repository was established, until April 2005.
The whole process has been automated and can be ob-
tained as a publicly available tool [20]. For *BSD ker-
nels, only kernels (directory src/sys) are considered, for
the rest, the whole CVS module is studied.

Although Lehman suggests plotting software size
against release numbers, we have done it against time,
for two reasons. First, we feel this way matches better
the semi-continuous release process found in many libre
software projects. And second, this way of depicting
evolution was also the one used by Godfrey et al., for
Linux. This also implies that using periodic CVS snap-
shots is enough, and we do not need the source packages
for specific releases.

Another sensible difference with Lehman’s studies
lies in the metric used for software size. Lehman uses
modules, because he argues this metric is more consis-
tent (it has a “higher degree ofsemantic integrity”) than
considering source lines of code [16]. Godfrey and Tu
counted uncommented lines of code, and we will do the
same. However, preliminary studies on the Linux kernel
seem to imply that the mean size of modules (counted
in lines of code) remains almost constant in time; we
have observed the same behavior in a fast inspection for
some projects. This would imply that counting lines or
modules would give the same evolution patterns. How-
ever, further research is needed to verify if this is valid
in general and to study the correlation of both metrics if
not.

As a final note, it is worth mentioning that in some
cases, the projects under study started outside a CVS,
but were later uploaded to one. In those cases, an initial

3

gap will appear in the plots.

4. Observations on the Linux kernel

Table 1 shows the main differences between the anal-
ysis on Linux by Godfrey and Tu, and the one we have
performed. When the first study was performed (in
the year 2000), two concurrent Linux versions existed:
the stable version 2.2.14 and the development version
2.3.39. 34 of the 67 stable releases, and 62 of the 369
development releases were analyzed in it, totaling 96 re-
leases. In our study, we have considered all the releases
published, both stable and development, including those
prior to the considered first stable release (1.0), and up
to 2.6.10 (released December 24th 2004). All in all, we
have studied 123 stable and 457 development releases.
It should be noted that even if the 2.6 branch is the
bleeding-edge stable branch, previous stable branches
(2.0, 2.2 and 2.4) are still actively maintained (although
usually without addition of new functionality, only bugs
are removed) and new releases appear from time to time.
The number of lines of code in 2.6.10 is larger than 4
millions, with a tarball size of about 45.5 MB. These
figures can be compared to those of 2.3.39: about 1.5
million lines of code, and about 17 MB of tarball.

Godfrey & Tu Our study
Date Jan 2000 Dec 2004

of releases 369D + 67S 457D + 123S
Studied releases 62D + 34S 457D + 123S
Most recent ver. 2.2.14 (2.3.39) 2.6.10

KSLOC most recent 1,425 (1,607) 4,147
Tarball size (MB) 15.9 (17.7) 45.5

Counting wc + awk SLOCCount

Table 1. Comparison between Godfrey &
Tu’s [9] and our study.

In the next subsections we will show the results of
reproducing Godfrey and Tu’s study for the growth of
Linux system-wide and for its subsystems (with the al-
ready mentioned slight methodological differences).

4.1. System level growth for Linux

Figure 1 shows the growth of Linux in terms of
sources lines of code, from the first versions in 1991 to
the most recent one in 2005. We have depicted two ver-
tical lines in all figures for Linux, showing the release
date of the 1.0 version (in the year 1994) and the time of

the study by Godfrey and Tu (in the year 2000). It can
be noted that the super-linearity that was found by God-
frey and Tu seems at first glance to have become more
remarkable with time. Based on statistical analysis we
have obtained the following software growth equation:

y = 0.26 · t2 − 322 · t + 195, 183

where y is the size in source lines of code and t the
days since version 1.0. The coefficient of determination
computed using least squares isr2 = .990.

Compared to Godfrey and Tu’s equation from 2000,
we see that both are quite similar. Interestingly enough,
our initial inspection, which led us assume that the
super-linear growth has become more remarkable with
time, is demonstrated by the fact that the factor that
multiplies the quadratical growth is now 0.26 instead of
0.21, meaning that the growth of Linux has accelerated
during the last five years.

Another fact that can be observed from this figure
is that the growth pattern followed by the Linux devel-
opers has changed over time. Until the year 2000 we
find a strong growth in the development branches, with
stable branches coming out of it with almost horizon-
tal evolutions (showing almost stagnation in growth),
while the newer stable branches 2.4 and 2.6 show steep
growths. That way, the current stable branch (2.6) is
growing steadily, with a shape quite similar to a develop-
ment branch. However, the latest releases seem to slow
down, maybe foreseeing the stabilization that would oc-
cur just before the start of a new development branch
(which would be 2.7).

Graphs for the evolution in time of the tarball sizes or
the number of files have been omitted for lack of space,
but they show the same behavior in terms of growth as
the number of lines of code shown in figure 1.

4.2. Growth of major subsystems

Godfrey and Tu included in their study the analysis of
the major Linux subsystems, following an idea by Gall
et al. [7], who stated that looking at the evolution of sub-
systems could bring more insight about the software un-
der consideration.

The growth of major subsystems can be seen in fig-
ure 2. As in the original work, the most growing subsys-
tem is the one comprising drivers, which grows steadily
even though in version 2.5.x thesoundsubsystem was
taken apart (which justifies the ripple around 2002).

Godfrey and Tu plotted the evolution of the share
of code by the major subsystems from version 1.0 (in
1994), while we also studied the previous versions al-
though we have not included that figure in this paper

4

 0

 500000

 1000000

 1500000

 2000000

 2500000

 3000000

 3500000

 4000000

 4500000

1990 1992 1994 1996 1998 2000 2002 2004 2006

1.0
1.1
1.2
1.3
2.0
2.1
2.2
2.3
2.4
2.5
2.6

Figure 1. Growth (lines of code) of Linux

for the sake of space. Those early releases show an er-
ratic behavior, because the architecture for Linux was
at that time not specified and changed drastically sev-
eral times. But from version 1.0 onwards, all major sub-
systems show an almost parallel growth pattern, mean-
ing that their relative growth is similar. Again, the gap
that can be found in early 2002 is due to the removal of
soundfrom drivers, while the one in early 2001 is due
to some code being allocated to thearch subsystem, as
it can be clearly observed from the figure. Besides these
inconsistencies, we can observe how the share of code
corresponding to thedrivers subsystem has remained
almost constant since 2000, while in the period from
1998 to 2000 its share grew from around 50% to 60%
of the total kernel size, even when Linux itself doubled
its size. On the other hand,net andfs show a decreas-
ing share, although it seems that in the latter case its
presence has remained around 10% during the last seven
years, whileincludeandsoundremain almost constant
in time through the whole system life, since version 1.0.

If we filter out thedrivers subsystem from figure 2,
we can identify thearch, fs, includeandnetsubsystems
and see how their growth shows a super-linear pattern.
This occurs even in the case ofnet, which has a growth

 0

 500000

 1000000

 1500000

 2000000

1990 1992 1994 1996 1998 2000 2002 2004 2006

arch
drivers

fs
include

init
ipc

kernel
lib

mm
net

sound

Figure 2. Growth of the major subsystems
in Linux (development releases)

5

that is not that steep as the one of the others. Hence,
we can conclude super-linear growth patterns can also
be found at the subsystem level in Linux.

Figure 3 shows the growth of the smaller, but most
essential subsystems of Linux:init, ipc, kernel, lib and
mm. The behavior before 1994 (version 1.0) is again
chaotic for thekernelsubsystem. Much of its code was
later moved to other subsystems, although since 1995
it shows a super-linear growth almost equal to the one
exhibited by themm subsystem. The rest of the sub-
systems do not show clear growth patterns: besideslib,
which has recently started to show a clear tendency to
grow, the rest remain almost constant for a long time, al-
though and from time to time they are affected by small
gaps because of code inclusion or exclusion. In any case,
all these subsystems are relatively small, which makes
their growth patterns less significant than those consid-
ered before for the system-wide analysis.

 0

 5000

 10000

 15000

 20000

1990 1992 1994 1996 1998 2000 2002 2004 2006

init
ipc

kernel
lib

mm

Figure 3. Growth of the smaller, core sub-
systems in Linux (development releases)

Performing our study with smaller granularity, we
can study the subsystems that compose thedriver sub-
system, which is by far the most important in terms
of lines of code. Interestingly enough, for almost all
those subsystems we couldn’t see hardly no super-linear
growth. The only curve that shows such a behavior is the
one that groups the “rest” of the drivers (those that are
not one of the major ones). The rest show linear trends
with periods of high activity, when a lot of code is in-
cluded at once (as for instance in early 2004 forscsi), or
regularly (thenetsubsystem shows a pronounced growth
from mid 1999 to early 2000, clearly different from the
linear trend before and after that period). It can be ob-

served that the sum ofothersurpasses it. But none of the
subsystems inothersurpassesnet; what happens is that
their number has raised to 37 more than those studied by
Godfrey and Tu.

In general, and in all subsystems, when we perform a
study on a smaller granularity level, super-linearity gets
less and less frequent and linearity arises. Godfrey and
Tu pointed out the existence of independent develop-
ment groups that worked in parallel due to a high mod-
ularization of the Linux kernel. We are currently ac-
tively researching if the linear growth patterns that arise
at a detailed level of analysis correspond to these de-
velopment groups. This could mean that each subsys-
tem would behave as a whole, independent system, with
its own (linear) growth pattern. In that case, the whole
kernel is just the composition of independent behaviors
throwing a super-linear pattern as a raise in the number
of subsystems can be observed.

5. Observations on the *BSD kernels

The operating systems based on the BSD kernel con-
stitute the most similar alternative to Linux-based op-
erating systems in the libre software world. All BSDs
derive from the UNIX version made at Berkeley since
the 1970s. In particular, both FreeBSD and NetBSD are
derivatives of the 4.4 BSDLite version released 1994,
while OpenBSD is a branch (first released 1996) from
NetBSD. These three BSD derivatives share architecture
and a lot of code [24], so ‘copying’ source code, or even
entire modules from the other kernels is common prac-
tice.

As in the case of the Linux kernel, we have re-
searched the growth of each of the BSD kernels as a
whole, and at the subsystem level.

5.1. System level growth for the *BSD kernels

Figure 4 gives the system growth for these systems
starting in late 1995, when OpenBSD had its first com-
mits. Even though all three kernels have achieved a
significant size (2.5 MSLOC for NetBSD and over 1.5
MSLOC for OpenBSD and FreeBSD), we can see that
their growth is not super-linear.

NetBSD and FreeBSD show an almost linear growth
pattern (see the values of the determination coefficient
r2 in table 2), which OpenBSD follows too, but only
until 2001 (afterwards it loses large quantities of code
in two occasions). Interestingly enough, we can identify
a super-linear growth rate for FreeBSD until the year
2000, which means that if Godfrey and Tu would have

6

BSD kernel Growth equation (linear fit) r2

NetBSD y = 610.2 · t + 585731 .993
FreeBSD y = 479.1 · t + 2000607 .972
OpenBSD y = 240.2 · t + 779607 .891

Table 2. Growth equation for the BSD ker-
nels (based on statistical analysis)

performed their study also on FreeBSD, they would have
found at the time of writing their paper similar patterns
for both of them. Only Linux keeps with such a super-
linear growth, while FreeBSD seems to follow a more
linear shape.

 0

 500000

 1000000

 1500000

 2000000

 2500000

 3000000

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

freebsd
openbsd

netbsd

Figure 4. Growth of the BSD derivatives

5.2. Growth at the subsystem level

Figure 5 shows the growth of the subsystems for
FreeBSD kernel in the same way we have done in the
previous section for the Linux kernel. The equivalent
figures for the OpenBSD and NetBSD kernels have been
omitted for the sake of space. Subsystems do not grow
super-linearly in any of the three cases, except fordev,
and only in the early times. It is noteworthy that the
shape of thedevsubsystem is similar in all cases, possi-
bly due to a common code base.

Thearchsubsystem is the largest one both in NetBSD
and OpenBSD, although in the latter case it seems to
stop growing early in 2001 contributing a great deal to
the shape to the total OpenBSD system.

Since one of the main goals of NetBSD is to work
on as many platforms as possible, the larger size ofarch

isn’t a surprise, neither its continuous growth. OpenBSD
supports many architectures, but with less drivers, and
is the less growing system of the three, probably due to
its strict security/auditing policies (as it is the base of
an operating system targeted to environments with strict
security constraints).

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

dev
contrib

kern
i386

Figure 5. Growth of the four largest sub-
systems of FreeBSD

6. Observations on other systems

We have studied 18 more large libre software sys-
tems, to widen the sample, with the aim of applying the
methodology to more cases, and to find out if results
can be generalized. We have focused on projects which
can be considered mature, and with an active community
of users and developers. In particular, we have selected
projects with a more an ample set of contributors (in the
range of the hundreds or above), since a critical mass has
to be achieved to ensure sustainability of large projects
(even if the contributions are unequally distributed) [18].

All of the selected systems are related to well known
libre software projects: GNOME, KDE (both aimed
at building a complete desktop environment), Apache
(well known by its web server, but producing also many
other tools) and Mono (an implementation of .NET).
These projects are usually considered typical libre soft-
ware ones, although several different development mod-
els are found among them. However, all of them include
voluntary and paid development work, external contri-
butions, and interest in satisfying the needs of a sizable
user community.

7

Project Start Version 1.0 Prev. Ripples Size Growth Function Corr. coef.
kdelibs May 97 Jul 98 N Y 615K y = 6421.1 · t + −16474.8 r = 0.995

jakarta-commons Mar 01 - N N 429K y = 9394.7 · t + −33888.0 r = 0.994
mcs Jun 01 Jun 04 N N 1081Ky = 26002.3 · t + −105089.3 r = 0.993

mono Jun 01 Jun 04 N N 222K y = 4912.9 · t + −3436.6 r = 0.992
koffice Apr 98 Jan 01 N N 780K y = 7965.3 · t + 20724.8 r = 0.992
kdepim Jun 97 Jul 98 N N 512K y = 4920.4 · t + −32103.6 r = 0.990

gnumeric Jul 98 Jun 02 N N 229K y = 3019.9 · t + 17322.8 r = 0.988
gtk+ Dec 97 Apr 98 Y Y 388K y = 3371.7 · t + 89968.9 r = 0.985

xml-xerces Nov 99 Oct 03 Y Y 375K y = 4345.2 · t + 104761.5 r = 0.977
galeon Jun 00 Dec 01 N Y 90K y = 1460.0 · t + 9095.4 r = 0.967

httpd-2.0 Sep 99 Sep 02 Y Y 127K y = 1000.5 · t + 65668.8 r = 0.947
xml-xalan Nov 99 Oct 00 N Y 337K y = 3896.0 · t + 101817.1 r = 0.943
kdebase Apr 97 Feb 99 N Y 362K y = 3097.1 · t + 72062.8 r = 0.935

kdenetwork Jun 97 Jul 98 N Y 293K y = 2142.9 · t + 48781.0 r = 0.933
kdevelop Dec 98 Dec 99 N Y 386K y = 4146.8 · t + −22622.4 r = 0.916

ant Feb 00 (Aug 03) N Y 120K y = 1774.4 · t + 15212.3 r = 0.882
evolution May 98 Dec 01 N Y 208K y = 3801.2 · t + 35801.7 r = 0.842

gimp Dec 97 Jun 98 Y Y 557K y = 2696.7 · t + 317718.9 r = 0.815

Table 3. Summary of the evolution of the libre software syste ms under study.

The data for these systems has been obtained in April
2005, and at least four years of development are con-
sidered for all of them. Table 3 includes a summary
of the evolution of the 18 libre software systems stud-
ied. For each row, the data about one system (its name
can be found in the first column) is offered: the date
when the system started to use CVS (not the starting
date of the project); the date for the 1.0 version, if avail-
able (in some cases that data is not available, such as
jakarta-commons, because it groups a set of subcompo-
nents that are released independently or in the case of
Ant for which we haven’t found a 1.0 release, so we
have inserted the date for release 1.1); whether a code
base existed before starting the system’s CVS (such as
for GTK+ or The GIMP); whether strong ripples can be
observed in the growth of the system; the current size
of the system (in lines of code); the linear growth func-
tion that fits the data for the system where t is given in
months and y in lines of code; and finally the last column
contains the correlation coefficient for that fitting.

From the 18 projects that have been considered, at
least 9 of them show a clear linear behavior throughout
all the systems life. We have fitted them to a linear func-
tion with r (correlation coefficient) values of about .99
and .98. However, all these systems have quite different
sizes and start dates, which reflect in different slopes for
their growth lines. It is also interesting to notice that for
these projects it is not possible to infer from its growth
plot when version 1.0 was released as the pattern is the

same before and after that release.
From the remaining 9 projects, 6 of them show also a

linear trend, although (strong or frequent) ripples in their
growth curve cause them to be fitted to linear functions
with r below .97 (but in all cases above .91). If those
ripples are filtered out, many of them show a behavior
which is similar to the one observed for the first group.
Ripples are usually due to the inclusion of external code,
the restructuring of the code base or the removal of code.

The remaining three projects, Ant, GIMP and Evolu-
tion, show growth patterns that clearly cannot be fitted
to linear (in fact, they showbad r values of .88, .87 and
.80). While Ant shows a classical smooth growth (with
some ripples early in the year 2002) as found in tradi-
tional software evolution studies up to the moment, the
other two projects may be seen as exceptions or anoma-
lies and hence require further explanation. Evolution
started as a small community-driven project, but about
two years later it was identified by a software company
as a key software for its business model and devoted sev-
eral developers to it. This may explain the super-linear
growth trend in its first stages, until version 1.0 was re-
leased. After that point, the growth follows the usual
pattern identified by Turski, except for the heavy refac-
toring that has made the code base get smaller at least
two times in the latest stages of development. On the
other hand, GIMP was uploaded to the CVS only after
three years of development, already with about 300,000
lines of code, which may cause some distortion. In any

8

case, until about 2000 we can observe an almost linear
pattern. But since then its growth has stagnated, in part
because it has a mature architecture, and most of the de-
velopment around GIMP is happening in modules, out-
side what is considered GIMP itself.

Therefore, we can say that 16 out of 18 systems fol-
low a growth pattern linear or close to linear, and those
that do not can be considered special in some sense.

To finish this section, just some considerations about
the ripples found in the second group. The reader should
remember that the systems we are considering are a part
of larger projects, which means that code restructuring
may happen not only intra-project, but also inter-project.
For instance, a sudden gap downwards may mean that
some large part of the source code has been pulled out
from a project to start a more specific one. This behavior
has been previously reported in the research literature on
libre software: so, for instance, for the sake of modular-
ity if the core group of developers grows larger than 15
to 20 developers, the project is split into smaller projects
with the intention of improving manageability [18].

7. Conclusions

In this paper we have shown how Linux continues
exhibiting a global super-linear growth pattern, as was
noticed by Godfrey and Tu five years ago. However,
super-linearity has become even more clear during those
five years. At the subsystem level, thedrivers subsys-
tem shows to be the most important component, being
itself the aggregate of many different smaller compo-
nents (device drivers), usually built by different groups
of developers. Most of those device drivers show a linear
growth, but the number of device drivers is increasing,
leading to a total super-linear growth pattern.

Applying the same study to the kernels of the BSD
family, we have found that they are generally not grow-
ing super-linearly. However, before the year 2000 the
growth of FreeBSD was super-linear, and the same can
be said for some of its subsystems, and those of NetBSD.
Except for these cases, the most predominant software
growth pattern is the one that follows linearity.

The appearance of super-linear patterns seem to be
related to the sudden inclusion of external code, to the
existence of residual old code that does not need to be
maintained (for instance, drivers for old devices), to a
specific software architecture design (with an already
fixed specification which has been widely tested, and
therefore only coding has to be done), or to the allo-
cation of work to different development teams. In this
sense, further research should be performed on the lin-

early growing subsystems and find out if super-linearity
is only achievable by aggregating work from different
parallel-working development groups. In any case, it is
not surprising that the Linux kernel shows such a pro-
nounced super-linear growth as it features most (if not
all) of the above characteristics.

With the aim of finding whether these results can
be extrapolated to other (non-kernel) domains, we have
also studied the growth of 18 large libre software appli-
cations. We have found that most of them show a clear
linear growth pattern, in some cases after filtering out
some ripples, due to occasional addition or removal of
large quantities of code.

Therefore we can conclude that, for the sample ana-
lyzed, growth is usually linear, with some cases of super-
linear growth. Since the sample is reasonably large, and
representative of a certain kind of libre software systems
(large in lines of code, with an active community and
user base, stable) we believe that this can be considered
the common growth pattern for this kind of systems.

We can also conclude that there are no noticeable dif-
ferences in the growth pattern before and after the first
stable results (1.0) for most projects. Most of the graphs
shown in this paper show absolutely no difference at
all. We can therefore state that, for the studied projects,
the behavior of the project is one of continuous release,
where the evolution after the first stable release is the
same than when the project was still considered not to
be release-quality.

In any case, the studied systems show a growth rate
that is higher than the smooth growth one and in con-
cordance with the findings of Succi et al. for GCC and
Apache [22]. This could mean that the Fourth Lehman
Law of Evolution does not apply to these large libre
software systems (although our analysis has some dif-
ferences with a classical Lehman study, which should
be further researched).

If this were the case, it could be a consequence of the
particular allocation and availability of human resources
in libre software projects with large surrounding com-
munities. For instance, there are many tasks (such as
testing and bug reporting) that are in fact performed out-
side the core group of developers, which means that man
power in some sense external to the project is actually
actively collaborating to its growth. In other words, the
flexible and auto-organized management of human re-
sources usually found in those projects could be the rea-
son of a growth rate higher than the one found in other,
more rigid and planned cases.

All this said, there is still not enough evidence to
state that linear growth is common in (large) libre soft-

9

ware systems, and even if that were the case (as it seems
from our study), why that happens, and to which extent
that contradicts Fourth Lehman’s Law. Therefore, more
projects should be studied, to improve the evidence (or
find cases where growth is not linear), and detailed anal-
ysis should be performed of how human resources are
allocated in libre software projects, with the aim of ex-
plaining the linear growth we have found.

8. Acknowledgments

We thank Juan Antonio Almendral, from the Mathe-
matics, Physics and Natural Sciences Department of the
Universidad Rey Juan Carlos for his invaluable help with
the statistics of this paper.

References

[1] E. Burd and M. Munro. Evaluating the evolution of a C
application. InIntl Workshop on Principles of Software
Evolution, Fukuoka, Japan, June 1999.

[2] A. Capiluppi. Models for the evolution of os projects. In
Proceedings of the Intl Conf on Software Maintenance,
pages 65–74, Amsterdam, The Netherlands, 2003.

[3] A. Capiluppi, M. Morisio, and P. Lago. Evolution of un-
derstandability in oss projects. InProceedings of the 8th
European Conf on Software Maintenance and Reengi-
neering, Tampere, Finland, 2004.

[4] T. Dinh-Trong and J. M. Bieman. Open source software
development: A case study of freebsd. InProceedings
of the 10th Intl Software Metrics Symposium, Chicago,
IL, USA, September 2004.

[5] J. R. Ehrenkranzt. Release management within open
source projects. InProceedings 3rd Workshop on Open
Source Software Engineering, Portland, Oregon, 2003.

[6] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking
systems. InProceedings of the Intl Conf on Software
Maintenance, pages 23–32, Amsterdam, The Nether-
lands, September 2003.

[7] H. Gall, M. Jazayeri, R. Klösch, and G. Trausmuth. Soft-
ware evolution observations based on product release
history. In Proceedings of the Intl Conf on Software
Maintenance, pages 160–170, 1997.

[8] D. Germn. The GNOME project: a case study of open
source, global software development.J of Softw Pro-
cess: Improvement and Practice, 8(4):201–215, 2004.

[9] M. Godfrey and Q. Tu. Evolution in Open Source soft-
ware: A case study. InProceedings of the Intl Conf
on Software Maintenance (ICSM 2000), pages 131–142,
San Jose, California, 2000.

[10] M. Godfrey and Q. Tu. Growth, evolution, and struc-
tural change in open source software. InIntl Workshop
on Principles of Software Evolution, Vienna, Austria,
September 2001.

[11] J. M. Gonzalez-Barahona, M. A. Ortuo Perez, P. de las
Heras Quiros, J. Centeno Gonzalez, and V. Matel-
lan Olivera. Counting potatoes: the size of Debian 2.2.
Upgrade Magazine, II(6):60–66, Dec. 2001.

[12] J. M. Gonzalez-Barahona, G. Robles, M. Ortuo Prez,
L. Rodero-Merino, J. Centeno-Gonzalez, V. Matellan-
Olivera, E. Castro-Barbero, and P. de-las Heras-Quirs.
Analyzing the anatomy of GNU/Linux distributions:
methodology and case studies (Red Hat and Debian).
In S. Koch, editor,Free/Open Source Software Devel-
opment, pages 27–58. Idea Group, Hershey, PA, 2004.

[13] K. Healy and A. Schussman. The ecology of open-
source software development. Technical report, Univer-
sity of Arizona, USA, January 2003.

[14] S. Koch and G. Schneider. Effort, cooperation and co-
ordination in an open source software project: Gnome.
Information Systems Journal, 12(1):27–42, 2002.

[15] M. Lehman and J. F. Ramil. Rules and tools for software
evolution planning and management.Annals of Software
Engineering, 11(1):15–44, 2001.

[16] M. Lehman, J. F. Ramil, and U. Sandler. An approach to
modelling long-term growth trends in software systems.
In Intl Conf on Software Maintenance, pages 219–228,
Florence, Italy, November 2001.

[17] M. Lehman, J. F. Ramil, P. Wernick, and D. Perry. Met-
rics and laws of software evolution - the nineties view.
In Proceedings of the Fourth Intl Software Metrics Sym-
posium, Portland, Oregon, 1997.

[18] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of Open Source software development: Apache
and Mozilla. ACM Transactions on Software Engineer-
ing and Methodology, 11(3):309–346, 2002.

[19] J. W. Paulson, G. Succi, and A. Eberlein. An empirical
study of open-source and closed-source software prod-
ucts.Transactions on Softw Eng, 30(4), April 2004.

[20] G. Robles, J. M. Gonzalez-Barahona, and R. A. Ghosh.
Gluetheos: Automating the retrieval and analysis of
data from publicly available software repositories. In
Proceedings of the Intl Workshop on Mining Software
Repositories, Edinburg, Scotland, UK, 2004.

[21] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller, and
A. J. Offutt. Maintainability of the linux kernel.IEE
Proceedings–Software, 149:18–23, 2002.

[22] G. Succi, J. Paulson, and A. Eberlein. Preliminary re-
sults from an empirical study on the growth of open
source and commercial software products. InEDSER-
3 Workshop, Toronto, Canada, May 2001.

[23] W. M. Turski. Reference model for smooth growth of
software systems.IEEE Transactions on Software Engi-
neering, 22(8):599–600, 1996.

[24] T. Yamamoto, M. Matsushita, T. Kamiya, and K. Inoue.
Measuring similarity of large software systems based on
source code correspondence. In6th Intl PROFES (Prod-
uct Focused Software Process Improvement) conference,
PROFES 2005, Oulu, Finland, June 2005.

10

