
Evolution of the core team of developers in libre software projects

Gregorio Robles, Jesus M. Gonzalez-Barahona, Israel Herraiz
GSyC/LibreSoft, Universidad Rey Juan Carlos (Madrid, Spain)

{grex,jgb,herraiz}@gsyc.urjc.es

Abstract

In many libre (free, open source) software projects, most
of the development is performed by a relatively small num-
ber of persons, the “core team”. The stability and perma-
nence of this group of most active developers is of great im-
portance for the evolution and sustainability of the project.
In this position paper we propose a quantitative methodol-
ogy to study the evolution of core teams by analyzing in-
formation from source code management repositories. The
most active developers in different periods are identified,
and their activity is calculated over time, looking for core
team evolution patterns.

1. Introduction

Employee turnover is known to be high in the traditional
software industry since many years ago [1]. However, in
libre software1 projects the study of developer turnover has
not been an active research topic. Most of the attention in
this area has been focused on the organizational structure of
the projects [2], with little attention to the dynamics of the
developers.

A noteworthy contribution in this sense, although it does
not address the evolution of developer communities, is the
onion model[3], which shows how developers and users are
positioned in communities. In this model, it is possible to
differentiate among core developers (those who have a high
involvement in the project), codevelopers (with specific but
frequent contributions), active users (contributing onlyoc-
casionally) and passive users [4,5].

This position paper shows how to better understand the
evolution of the most active group of developers contribut-
ing to a libre software project. A specific methodology
has been designed to quantitatively characterize a projectin
the spectrum between these two scenarios, and to visualize
more in detail the evolution of the core team. The first steps
of this methodology, applied to a few projects, are explained

1In this paper we will use the term “libre software” to refer both to “free
software” and “open source software”.

in [6]. An extension and refinement of the methodology is
presented here.

2. Methodology

The methodology used in this study is based on retriev-
ing data about the activity of developers from source code
management repositories, which are mined using CVS-
AnalY [7]. This tool retrieves information about every com-
mit to the repository, and inserts it into a database where it
can be conveniently analyzed.

To characterize the evolution of the core team, first the
life of the project is split in periods of equal duration. Then
for every periodi, the most active developers are identified
asCoreTeami. This is done by calculating the number of
commits during that period for the most active developers.
For eachCoreTeami, its activity is tracked for the rest of
the life of the project (before and after periodi). Hence,
for each periodj, the number of commits is calculated for
all the developers inCoreTeami. Finally, the resulting
data (that represents the activity of the eachCoreTeami

for all periods) is plotted in several formats, and collapsed
into some indexes that allow comparison and classification.

Because of several trade-offs, we have not considered a
single time span for periods. For the purposes of the study,
usually the most significant results are obtained by dividing
the history of the project into 10 or 20 periods.

After considering several alternatives, we have found
that fractions of 0.1 and 0.2 (that is, the top 10% and 20%)
are large enough to capture developers producing most of
the activity (usually more than 50%, reaching in many cases
as much as 90% or 95% of the total number of commits).

3. Outputs of the methodology

Our methodology provides both some graphs that help
to visualize the results and some data (in the form of arrays
and indexes).

The main output of the methodology is the
AbsoluteMatrix: a squared two dimensional array,
with the number of periods as range. Values for each

position x, y in the array are the absolute number of
commits forCoreTeamx in periody. Therefore, positions
in the diagonal (wherex = y) correspond to the activity of
each core team during the period in which it is actually the
core team. Positions wherey > x represent the activity of
that core team in periods after that moment, whiley < x

represent the ’past’ activity of that team.
In addition, theNormalizedMatrix is produced. It is

calculated from the absolute matrix, using for each position
its original value divided by the total number of commits in
the corresponding period:

NormalizedMatrixx,y =
AbstoluteMatrixx,y

TotalCommitsy

Complete arrays provide a lot of information, but they
are also in some cases too detailed and difficult to interpret.
Therefore, a single parameter,Index, which summarizes
the information in a matrix, could be calculated as follows:

Index = 100 ∗
∑

x6=y

CoredMatrixx,y

Note that high values for this index are indicative for a
higher “load” on all positions, which means that the activity
of the different core teams is high over their whole history
(a situation that is close to the “code gods” scenario, as this
happens when the composition of the core group changes
seldom). The smallerIndex is, the more positions with
little activity, pointing out the existence of a heterogeneity
of developers composing the core teams (having a “series
of generations” scenario).

Several graphs are also produced to visualize and help
with the interpretation of the previous data:

• Absolute graph. Absolute number of commits for each
core group (Y axis) for each interval over time (X
axis).

• Aggregated graph. Aggregated number of commits for
each core group since the beginning of the project (Y
axis) versus time (X axis).

• Normalized graph. Fraction of the total commits per-
formed by each core group for each interval (Y axis)
versus time (X axis).

• Heat map. Displays theCoredMatrix, with a color
(or gray-scale) for each position.

• Normalized 3D map. This is a three dimensional view
of theNormalizedMatrix, with Z axis representing
the normalized activity per position.

• Absolute 3D map. This is a three dimensional view
of theAbsoluteMatrix, with Z axis representing the
activity per position.

The combined observation of these graphs, for different
time periods (10 or 20), and using different fractions of de-
velopers for identifying core groups (top 10% or 20%), pro-
vides a complete landscape of the activity of the core group
over time project.

4. Case study

The methodology described in the previous section has
been applied to several projects, although only one of them
has been selected due to the lack of space.

4.1 Case study: the GIMP

The GIMP can be considered as a canonical example of
a project with “code gods”, in which the composition of
the core team is highly stable over time. It is a very ac-
tive project (by number of commits) with many developers
involved.

Graphs in figure 1 show the typical pattern of code gods
scenarios. The lines in all graphs are almost overlapping,
which means that all the core teams have almost the same
composition. However, the core team is not always ex-
actly the same. A detailed study of the developers in the
core teams yields that one of the most active developers is
present in all of them. The second and third most active de-
velopers enter during the third interval (which starts around
mid 1999) and stay in the project until today.

The normalized graph, also shown in figure 1, provides
further information. By construction, the higher curve in
each period corresponds to the core team that has been
identified in it. In the case of a “code gods” project, the
other core groups should be near that maximum (or at the
same level if core groups during different time periods have
exactly the same composition) as the composition has not
changed much over time.

The identification of the code gods scenario is even more
evident in the heat maps of figure 2. Except for the diago-
nal (which is, by construction, always black), the gray color
dominates the map, meaning that the composition of the
core groups over time is quite similar. The right map, with
a higher resolution, shows also the special case of the first
core groups: the upper left positions are darker, and are sur-
rounded by lighter ones, showing a change in generations.

The 3D maps of figure 3 provide some more detail. In
the normalized map, the lighter plateau that dominates most
of the map is a clear indicator of a stable code gods region.
Again, the beginning of the project shows a slightly differ-
ent pattern, with a different composition of the core group.

It is worth noticing that both normalized and absolute 3D
maps, when projected on the XZ plane, produce the normal-
ized and absolute graphs. Moreover, thanks to how the nor-
malized map is colored, when projected on the XY plane,

 0

 5000

 10000

 15000

 20000

 25000

 0 2 4 6 8 10

N
um

be
r

of
 C

om
m

its

Intervals (time) - 0: Project start - 10: today

Evolution of commits in time for top commiters(by number of commits

Core team 1
Core team 2
Core team 3
Core team 4
Core team 5
Core team 6
Core team 7
Core team 8
Core team 9

Core team 10

(a) Absolute

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 2 4 6 8 10

N
um

be
r

of
 C

om
m

its

Intervals (time) - 0: Project start - 10: today

Evolution of commits in time for top commiters(aggregated)

Core team 1
Core team 2
Core team 3
Core team 4
Core team 5
Core team 6
Core team 7
Core team 8
Core team 9

Core team 10

(b) Aggregated

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10

N
um

be
r

of
 C

om
m

its

Intervals (time) - 0: Project start - 10: today

Evolution of commits in time for top commitersby percentage for each time interval

Core team 1
Core team 2
Core team 3
Core team 4
Core team 5
Core team 6
Core team 7
Core team 8
Core team 9

Core team 10

(c) Normalized

Figure 1. Graphs for the GIMP project. A fraction of 0.2 was used for identifying core teams.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0
 5

 10
 15

 20
 25

 30
 35

 40 0 5 10 15 20 25 30 35 40

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Commits

Periods

History (periods)

Commits

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0

 5

 10

 15

 20

 25

 30

 35

 40 0
 5

 10
 15

 20
 25

 30
 35

 40

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

Commits

Periods

History (periods)

Commits

Figure 3. 3D maps for the GIMP project, using quarters as period, and 0.2 as fraction of top develop-
ers for identifying core teams. Top is normalized map, bottom is absolute.

(a) 10 periods; 0.2 fraction (b) 20 periods; 0.1 fraction

Figure 2. Heat maps for the GIMP project.
Fraction provides the fraction of of top devel-
opers to identify the core team.

the resulting 2D map should result in the heat map. There-
fore, these 3D maps in some sense include all the informa-
tion in the other graphs and maps.

In addition to all this graphical information, the In-
dex calculated for the GIMP (10 periods and 0.1 frac-
tion) is 45.20. Values for other projects, such as Mozilla
(18.59), Eclipse (22.26), OpenOffice.org (31.64) or Post-
greSQL (68.67) shows that the value of the Index is high
in comparison with many other large projects. Only Post-
greSQL, which is known to be led primarily by two devel-
opers, has a higher value than GIMP.

5. Conclusions and further research

In this position paper a methodology has been designed
that allows for a simple, yet powerful analysis of the evolu-
tion of the core team of libre software projects. The method-
ology is quantitative, and can be automated, only requiring
that the development is performed using a source control
management system, and that the researcher has access to

the corresponding repository. Fortunately, this is the case
for a large fraction of libre software projects, including the
most relevant ones.

The methodology can be used to rank projects according
to their distance to the two extreme cases of “code gods”
and “series of generations”, using the produced indexes.
But it provides also a lot of insight on the evolution of the
core teams, by showing visually (both in graphs and maps)
the activity patterns of the developers forming the core team
in each period of the life of a project. This information can
be used to identify levels of smoothness in transitions, to
detect break points in the evolution of the core team, to un-
derstand the differences in activity of the core team in differ-
ent periods, or to estimate unevenness in the contributions
of the most active developers when compared to the rest of
them.

We have applied the methodology to a relevant case
study, using a well-known libre software project. Some fac-
tors not specifically discussed in this paper could influence
the appropriateness of the methodology. Among them, the
relevance of using the number of commits as a proxy for
the activity and importance of developers. For validating it,
we have studied some other parameters, such as the number
of changed lines, without finding meaningful differences.
However, an important problem remains open: to which ex-
tent other, non-coding activities (such as discussion, writing
of documentation, or even mediation between developers)
should be considered to better identify the core team of de-
velopers. This should be the focus of further research.

Another open field for research is the use of the method-
ology in classical (non-libre) software projects. The fact
that many developers in libre software projects are volun-
teers can provide very interesting information about the nat-
ural behavior of programmers, as these developers are self-
selected (i.e., there is no traditional, mandatory task assign-
ment as it can be found in the commercial world). In this
regard, one of the findings that should be further researched
is the amount of time for turnover. From our limited set
of projects we have seen that, for those projects with sev-
eral generations, the time span for a generation ranges from
three to five years. This could be indicative for a program-
mers moving to a different project to keep his motivation
and interest on his work high. Having developers enrolled
in companies (such as the cases of Mozilla and Evolution)
and volunteer developers in these projects could give further
insight to this question in subsequent research.

In any case, from our work we can conclude that the
study of the behavior of human resources in libre software
projects and in software engineering in general, and the re-
lationship between its join/leave patterns and the evolution
of the project, is a field worth to explore. This paper tries to
be a first step in this direction, focused on studying its dy-

namics, and on finding how projects cope with the changes
caused by it.

6. Acknowledgments

This work has been funded in part by the European
Commission, through projects FLOSSMetrics, FP6-IST-
5-033982, QUALOSS, FP6-IST-5-033547, and Qualipso,
FP6-IST-034763, and by the Spanish CICyT, project Sobre-
Salto (TIN2007-66172)

References

[1] B. W. Boehm, Ed.,Software risk management. Piscat-
away, NJ, USA: IEEE Press, 1989.

[2] D. M. Germn, “The GNOME project: a case study of
open source, global software development,”Journal of
Software Process: Improvement and Practice, vol. 8,
no. 4, pp. 201–215, 2004.

[3] K. Crowston and J. Howison, “The social structure
of free and open source software development,”First
Monday, vol. 10, no. 2, February 2005.

[4] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two
case studies of Open Source software development:
Apache and Mozilla,”ACM Transactions on Software
Engineering and Methodology, vol. 11, no. 3, pp. 309–
346, 2002.

[5] T. Dinh-Trong and J. M. Bieman, “Open source soft-
ware development: A case study of freebsd,” inPro-
ceedings of the 10th International Software Metrics
Symposium, Chicago, IL, USA, 2004.

[6] G. Robles and J. M. González-Barahona, “Contribu-
tor turnover in libre software projects,” inOpen Source
Systems Conference, June 8-10, 2006, Como, Italy,
2006, pp. 273–286.

[7] G. Robles, S. Koch, and J. M. Gonzlez-Barahona, “Re-
mote analysis and measurement of libre software sys-
tems by means of the CVSAnalY tool,” inProceed-
ings of the 2nd ICSE Workshop on Remote Analysis
and Measurement of Software Systems (RAMSS), Ed-
inburgh, Scotland, UK, 2004, pp. 51–56.

