
Towards a Simplification of the Bug Report form in Eclipse

Israel Herraiz
Universidad Rey Juan Carlos

Madrid, Spain
herraiz@gsyc.es

Daniel M. German
University of Victoria

Canada
dmg@uvic.ca

Jesus M.
Gonzalez-Barahona

Universidad Rey Juan Carlos
Madrid, Spain

jgb@gsyc.es

Gregorio Robles
Universidad Rey Juan Carlos

Madrid, Spain
grex@gsyc.es

ABSTRACT

We believe that the bug report form of Eclipse contains too
many fields, and that for some fields, there are too many
options. In this MSR challenge report, we focus in the case
of the severity field. That field contains seven different levels
of severity. Some of them seem very similar, and it is hard to
distinguish among them. Users assign severity, and develop-
ers give priority to the reports depending on their severity.
However, if users can not distinguish well among the various
severity options, they will probably assign different priorities
to bugs that require the same priority. We study the mean
time to close bugs reported in Eclipse, and how the severity
assigned by users affects this time. The results shows that
classifying by time to close, there are less clusters of bugs
than levels of severity. We therefore conclude that there is
a need to make a simpler bug report form.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement; K.6.3 [Software management]: Soft-
ware maintenance

General Terms

Management

Keywords

bug report, bug tracking system, Eclipse, MSR Challenge

1. INTRODUCTION
Bug reporting is an important task for the sustainability

of a libre software project [3]. Libre software projects rely on
their users for testing and verification: “With enough eye-
balls any bug is shallow” (also known as Linus Law) [2]. Bug

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’08,May 10-11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-024-1/08/05 ...$5.00.

Severity Description

Blocker Blocks development and/or testing
work.

Critical Crashes, loss of data, severe memory
leak.

Major Major loss of function.
Normal (no description given)
Minor Minor loss of function, or other

problem where easy workaround is
present.

Trivial Cosmetic problem like misspelled
words or misaligned text

Enhancement Request for enhancement

Table 1: Types of severity for bugs. Source:
https://bugs.eclipse.org/bugs/page.cgi?id=fields.html

reporters (those submitting bugs) are important members of
the communities behind libre projects. Hence it is impor-
tant to constantly evaluate if the defect tracking system is
satisfying the needs of both the users and the developers. In
particular, we would like to know if it is possible and nec-
essary to simplify the defect reporting form used in Eclipse
without losing its effectiveness.

Software developers are usually unable to cope with all
the bugs that are notified as they are submitted. They need
to prioritize them. They need to determine, for any partic-
ular bug, how important it is, and allocate their time and
resources according to such prioritization. Bug tracking sys-
tems allow reporters to select a severity for the bug they have
found. This information is expected to be useful to devel-
opers, who do not have to sort through every single report
to attend those with a greater severity first and those lesser
one.

Bugzilla has become one the most pervasive bug tracking
system in the libre software world. It was originally devel-
oped by the Mozilla project to help them manage and track
defects. In addition to Eclipse, Bugzilla is used by other
well-known projects such as GNOME and KDE. In Bugzilla
every bug is labeled with a severity attribute which can take
one of the seven types described in table 1. Those defini-
tions are part of the default installation of Bugzilla, and are
included in the bug reporting guidelines of Eclipse.

One of the major problems when assigning severity to a
bug is that a reporter might not be the best qualified to de-

termine exactly what type the defect falls into [4]. Another
issue is that to submit a report it is required to know the
precise difference between the categories, and this is not al-
ways the case (e.g. a person who does not bother to read the
description of each type of severity might find it confusing
to report a defect as minor or trivial). We believe that these
definitions are confusing, as having seven different levels for
severity only confounds reporters.

The severity field is expected to be used by developers to
classify bugs according to their importance, and to select
what bugs are attended first. Developers would also use the
field priority to specifically state the order in which bugs
should be solved (there are five types of priorities: P1, P2,
P3, P4 and P5).

We believe that if there are seven types of severities, and
developers organize their work using them, then we should
observe seven groups of defects (one per each type of sever-
ity) when they are classified according to the time that it
takes between the report of the defect and its resolution. We
should also expect to see a correlation between the seven
severities and the five priorities.

The objective of this paper is to evaluate these two state-
ments using the database of the Bugzilla tracking system of
Eclipse.

The rest of this paper is organized as follows: the next sec-
tion describes the data source used for this paper. Section 3
provides the statistical analysis used in this study, while Sec-
tion 4 presents our results. Section 5 includes a description
of the requirements that the data source must fulfill in order
to use the methodology described in section 3. The last sec-
tion includes conclusions and some considerations for further
work.

2. DATA SOURCE
For this study, we have used the database of the Bugzilla

tracking system of Eclipse1. For each defect we collected its
severity (as assigned by the user), priority (as assigned by
the developer), developer id and time elapsed since the bug
was reported till it was closed. We only considered closed
bugs.

3. METHODOLOGY
Our main hypothesis can be stated as: when defects are

classified according to the time it takes to solve them they
fall into less than seven categories.

To test this hypothesis, we have divided closed bugs into
seven categories (one for each degree of severity assigned by
the user). For each bug in each category we have measured
the time that it took to close the bug, as the time elapsed
from the notification of the bug to when it was marked as
closed.

After this step, we applied an statistical method called
one-way unstructured comparison [1] (or one-way analysis of
variance in other sources), that compared the mean time for
each category. This method is used to test the equality of
three or more means at one time, by using variances. The
method requires the populations from which samples were
taken to be symmetrically distributed. The samples must be
independent, and the variances of the different populations
must be equal. However, the method is relatively robust to
violations of these assumptions.

1Available from http://archive.eclipse.org/arch/

Figure 1: Bugs grouped by severity. Horizontal axis
shows mean time interval to close a bug (in months).
The straigth segment correspond to the test (LSD,
Least Significant Difference) that determine if the
means are statistically different. Using the LSD pa-
rameter, we obtain three different groups of bugs,
as shown by the three segments just below the axis.

The method returns a value of a statistical parameter that
can be used to determine if the means of two groups are
different. If the difference among the means is smaller than
this parameter, those means are not statistically different
and therefore the two groups may be considered of the same
kind.

We have applied this to the seven groups of bugs, classi-
fied by severity (assigned by the users). We have used the
same method to the five groups of bugs grouped by prior-
ity (specified by the developers). The values that we used
to differentiate among groups where the mean time that it
took to close the bugs in each group.

4. RESULTS

4.1 Groups by severity
Figure 1 shows the different groups of bugs, labeled by

severity. The horizontal axis represents the time interval to
close a bug, measured in months. The values are the mean
of the times for each category. The plot shows the parame-
ter LSD (Least Significant Difference). This parameter acts
as a “yardstick”. If two means are separated by more than
the LSD value, those means are considered to be statisti-
cally different. Otherwise, the two means are obtained from
samples that belong to a same population. In other words,
bugs contained in the two groups are statistically of the same
class.

When reporters submit new bugs, they are using three dif-
ferent degrees of severity (“blocker”, “critical” and “major”)
for bugs that are attended with the same highest priority.
On the other hand, they are using “normal”, “trivial” and
“minor” for bugs that are attended with a similar priority
by the developers. Finally, requests for enhancements are
attended with the lowest priority.

Therefore, attending to these criteria, we have three differ-
ent classes of bugs. We have labeled these categories as im-

portant, not important and request for enhancement. Those
classes contain following severities:

• Important: Blocker, critical and major.

• Non-important: Normal, trivial and minor.

• Request for enhancement: Enhancement.

Figure 2: Bugs grouped by priority. Again, hori-
zontal axis shows elapsed time to close the bug (in
months). In this case, we have again three groups.

4.2 Groups by priority
So far, we have analyzed how the seven groups of bugs

(sorted by severity) can be simplified into three groups. The
value of severity assigned by the user helps developers to
assign the right priority to those bugs. Thus, high severity
bugs should be attended with higher priority than low severe
bugs.

Developers can assign an additional priority property to
their bugs. This property has only five levels (compared to
the seven levels of severity).

We believe that this asymmetry exists because bugs in a
given severity class can be prioritized differently (some bugs
labeled as critical should be solved before others).

However, the priority field is not used like this. The bug
priority is used as a major field and classifies bugs according
to the order in which they are solved: bugs with a lower
priority are attended later than bugs with a higher priority.

We presume that the time to close a bug will be longer for
lower priority bugs. The truth is that the time to close bugs
depends on many factors. For instance, more complex bugs
in spite of having a higher priority, may take much more
time to be fixed than trivial bugs (that will have probably a
very low priority). But overall, when considering the entire
population of bugs, we can assume that the factor with the
most impact on the time to close a bug is its priority.

With these assumptions, we classified bugs according to
the time it took to close them and obtained five groups,
classified according to the priority assigned by the developer.

Figure 2 shows the results. Again, the horizontal axis
shows the time interval from the notification of the bug to
when the bug is closed, measured in months. Each label in
that axis corresponds to one of the levels of priority (from P1
to P5, in Bugzilla). The values shown are the mean times for
each group of priority. Using the LSD parameter, we have
three classes of bugs: the first class contains P3 and P1, the
second P2 and P5, and the third class only P4. Again, we
have found only three different classes of bugs. The mean
time to close values do not match the values of the previous
classes though.

It is peculiar that P3 has a shorter time to close than P1
and P2. We consider the possibility that some developers
might be using priorities in different ways (some developers
might never use P1 and P2, for example) and decided to
plot the mean time to close for the four developers who have
closed the most defects. Figure 3 shows the results: only the
second top developer is using the five levels of priority. The
rest are using only two or three levels.

Figure 3: Mean time to close the bugs for the top
four developers. The results are shown aggregated
by priority. Horizontal axis shows time in months.
Some developers use only a subset of the possible
levels of priority.

5. THREATS TO VALIDITY
We have not extracted a sample from the data, but taken

all the data stored in the database to make the analysis.
This approach may suppose some threats to the validity of
the study.

We plan to repeat this analysis, and make a more pro-
found study filtering the different bugs by component, prod-
uct, resolution (fixed, not valid, duplicated, etc), using all
the data instead of randomly extracted samples. Thus, we
could select the size and properties of the sample in order
to fulfill the requirements mentioned in section 3. Those
requirements are:

• The populations from which the samples were taken
must be symmetrically distributed.

• The samples must be independent.

• The variances of the populations must be equal.

Our data is asymmetrical. We repeated the methodology
using the logarithm of the distribution, that was much more
symmetrical. The number of groups (and the kind of groups)
obtained were the same. We have included the “linear” (non
logarithmic) analysis in the main sections of the paper for
the sake of clarity: it is easier to think directly in time to
close the bug rather than in logarithms. In any case, the
study should be performed on a symmetrical distribution,
making the transformations needed for that.

Regarding the independence of the samples, we can as-
sume that the bugs are independently generated, and there-
fore that the samples obtained from the Bugzilla are inde-
pendent. Even in the case of duplicated bugs, those are
independently generated, as long as one bug report is not
based in the other.

Regarding the variances, the variances in our case differ.
Some of them are quite equal, but for those groups that have
less bugs (for instance the case of enhancements) the vari-
ance is greater. We think that differences in the variances are
due to the different sizes of the population: smaller groups
have a greater variance. In this case, enhancements resulted
to present very differ values of the mean time to close, so we
plan to repeat the analysis ignoring enhancements, in order
to get more coherent populations of bugs.

Summarizing, some of the requirements of the method are
not completely fulfilled for the raw data used in this report.
This supposes some threats to the validity of the study. We
have tested some of the threats, and have found that the
results are similar that using the raw data. In any case,
the study should use a treatment for the data, in order to
obtain more coherent populations. Furthermore, we have
used aggregated data. The study should be repeated using
a breakdown process, hence obtaining more coherent groups
of bugs (for instance, studying each component separately).

We plan to do so and overcome the possible threats to the
validity of this study in a further work.

6. CONCLUSIONS AND FURTHERWORK
We believe that the report forms of Bugzilla (the bug

tracking system used by Eclipse) are too complex. There
are too many fields, and for each field, too many options,
and that some of these options can be removed without af-
fecting the way bugs are handled.

In this study, we have focused in the fields for severity and
priority. We demonstrate that the severity of defects can be
reduced from seven options to three, and that priority can
be reduced from five options to three.

When properly used the severity field provides valuable
information to the developers. Unfortunately not every bug
reporter is capable of using the current classification. Per-
haps a solution is to leave this responsibility to a bug master:
the report classifies the bug based on three categories (im-
portant, non-important, and request for enhancement), and
the bug master further classifies the bug using the current
seven.

While developers are using only three priorities, not all
developers are using them in a consistent manner. Some
never use priority 1 and 2, and some never use 4 and 5.
This can lead to confusion. We strongly recommend that
the number of priorities is reduced to 3: high, medium and
low.

We have also observed that there are two different pat-
terns of use of the priority field: few developers use them
to subclassify the severity field (they will classify each of
the critical types with P1, P2... etc; effectively ranking how
each of the bugs in each severity should be handled); while
others use them independently of the severity field (P1 or
P2 will always be used for highly critical bugs and P4 or
P5 will always be used for those with a very low severity).
This lack of uniformity might be confusing if one defect has
to be passed from one developer to another, and should be
addressed.

There is at least another practical implication. Bugzilla
designers tried to make Bugzilla universal. In order to ful-
fill this goal, they created many different levels of severity,
priority, etc, and created many possible fields for the report
forms. But people in Eclipse are not using them. Bugzilla
designers might not be getting any feedback on how other
projects use their system. For instance, if Bugzilla develop-
ers would find that most of the bugs severity may be labeled
only with three categories, they would have changed it time
ago (or at least make it customizable).

It is also interesting to mention that the defect tracking
system of FreeBSD has only three levels for severity and
three for priority. We would like to get access to the Bugzilla
databases of several Mozilla Foundation projects (the origi-
nal intended users of Bugzilla), and any other project using
it as its defect tracking system to evaluate and compare
how they use the bug severity and priority fields. However,
bug tracking databases are not usually made available to
researchers and third parties. This is unfortunate. Making
those databases available would help understand how they
are used, and, as this paper does, suggest improvements.

7. REFERENCES
[1] J. Maindonald and J. Braun. Data Analysis and

Graphics using R. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University
Press, 2006.

[2] E. Raymond. The Cathedral & the Bazaar. O’Reilly,
1999.

[3] L. Villa. How GNOME learned to stop worrying and
love the bug. In Talk at the Otawa Linux Symposium,
Otawa, July 2003.
http://tieguy.org/talks/OLS-2003-html/.

[4] L. Villa. Why everyone needs a bugmaster. In Talk at

linux.conf.au, Canberra, April 2005.
http://tieguy.org/talks/LCA-2005-paper-html/.

