
From Pigs to Stripes: A Travel through Debian∗

Juan José Amor, Gregorio Robles, Jesús M. González-Barahona, and Israel Herraiz

June 2005

Keywords

libre software, Debian, GNU/Linux, libre software engineering, software evolution, lines of code,
COCOMO

Legal Notice

Copyright (cc) 2005 Juan José Amor, Gregorio Robles, Jesús M. González-Barahona and Israel
Herraiz. Some rights reserved.

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-sa/2.0/ or send a letter to Cre-
ative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Abstract
The Debian GNU/Linux is one of today’s most popular Linux-based distributions. It is in-

tended not only for final users, but also as a basis for other projects which can build on top of it, as
is the case of some well-known “live” distributions and meta-distributions. Since its beginnings,
more than one decade ago, it has undergone many technical and organizational changes, while ex-
perimenting an spectacular growth. This paper is a study of the evolution of Debian GNU/Linux
in time for the last five stable releases (from 2.0 to the upcoming 3.1 version). We show results
for the size in packages of the different releases, the size in number of source lines of code, the
importance of the various programming languages in which the software is written, the evolution
of the number of developers. We also apply the COCOMO “classical” cost estimation model to
the whole distribution, which can be considered as an first approximation of the effort (and cost)
for creating the software in Debian from scratch, using traditional development models.

1 Introduction
In the early nineties, the first GNU/Linux distributions arose from the union of the GNU tools, the
Linux kernel, and some other pieces of libre software1. Their main purpose was to facilitate the in-
stallation and use of the software as much as possible, something that at the time was an arduous task,

∗This work has been funded in part by the European Commission, under the CALIBRE CA, IST program, contract
number 004337, by the Universidad Rey Juan Carlos under project PPR-2004-42 and by the Spanish CICyT under project
TIN2004-07296.

1Through this article, we use “libre software” as a way of referring both to free software and open source software.
Though open source software and free software communities are very different, the software is not, since almost all
licenses considered to be “free” are also considered “open source”, and the other way around.

requiring large amounts of patience and knowledge. Later, during the mid nineties, the package man-
agement systems emerged as another important innovation in libre software distributions. Those tools
allowed not only to install a distribution easily, but also offered the possibility to manage (remove,
add or update) packages once they had been installed.

Distributions filled, consequently, a space that in the world of proprietary software seldom reaches
important proportions: integrators. Their work consists on taking the sources, usually from their
original (upstream) author(s), to group them together with other tools and applications that could be
interesting, and to pack everything together in such a way that the task of installing or of updating
enormous amounts of packages is easy enough for the common end-user.

Organizations and companies that create distributions are also responsible for the quality of the
final product, a very important task if we consider that most of the libre software projects are man-
aged by volunteers [Michlmayr2003]. In this sense, they are the responsible face to their users for
the stability and security of the resulting distribution. Therefore, it is not difficult to imagine why
distributions soon occupied an important position, as far as the popularization of libre software in
general and GNU/Linux systems in particular is concerned.

A large number of distributions do exist, each with its own peculiarities: commercial aim (or
not), size (in number of packages, in lines of code, etc.), release policy, etc. This study is focused on
one of them, the widely extended and popular Debian GNU/Linux. We analyze its latest five stable
releases (from Debian 2.0 to the upcoming Debian 3.1), which cover a period of about seven years.
The approach followed for the study is based mainly on the inspection of the source code for the
packages, with the aim of getting some insight on how this code is evolving from a macro point of
view. As a complement, a (less detailed) analysis of the developer population is also performed.

Some important findings of the study are: the current size of Debian, about 230 MSLOC (millions
of source lines of code); the evolution of this size in time (doubling about every two years); the
packages remaining from latest releases (for instance, 158 of the 1,096 Debian 2.0 source packages
are still in Debian 3.1, with the same version number); the share of the dominant languages (C is the
first one, but descending from more than 75% in Debian 2.0 to about 57% in Debian 3.1); and the
COCOMO-estimated substitution cost for all software in Debian, about USD 8 billion.

Most of the data in this paper are presented as a brief summary, without digging into details. We
suggest the interested reader to visit the Debian Counting web site [DebianCounting], where more
detailed statistical information, graphs and data can be found. In addition, the Libresoft web site
[Libresoft] contains more papers and information on libre software engineering [GBarahona2003b].

The structure of this paper is as follows. Next, the Debian project is briefly introduced, followed
by an study on the evolution of the number of voluntary Debian developers. In the fourth section we
introduce the methodology we have used for collecting the data shown later: size of the systems as
a whole, size of packages, and usage of languages in the distribution. Some of these data are used,
in the next section, for estimating substition cost, using COCOMO. The ninth section compares the
size of Debian GNU/Linux with other GNU/Linux distributions, followed by a comparison with other
operating systems and applications. The paper ends with the usual section on conclusions.

2 About Debian
Debian is a complete operating system, with thousands of applications, composed exclusively of
libre software (according to the Debian Free Software Guidelines [DFSG]), that uses Linux as the
underlying kernel (although there are some efforts to support in the future some other kernels, such as

2

the HURD or FreeBSD). It is available for several hardware architectures, including Intel x86, ARM,
680x0, PowerPC, Alpha and SPARC. Debian is not only the largest GNU/Linux distribution, it is also
one of the most stable ones, enjoying several prizes based on user preferences. Although its number of
users is difficult to estimate, since the Debian project does not directly market CDs, and the software
that it contains can be redistributed by anyone who desires to do so (and is in fact redistributed, as
such or modified, by many parties), we can assume with no doubt that it is an important distribution
within the GNU/Linux market. One of the key characteristics of Debian as a project is the Debian
Social Contract [DebianSocialContract] (agreed by all developers) which details not only the primary
goals of the Debian project, but also the means that will be used to carry them out.

The Debian distribution has been created by around one thousand developers (volunteers, mostly
IT-related professionals and students). The work of these volunteers consists on taking the source
programs (in most of the cases from their original, upstream authors), to configure, compile, test and
finally pack them. The final product of this work is one or more packages, which a user can select
for installation it her system (and later for update or removal). In principle, the work of the Debian
developers may seem easy, but the needs of customization (to conform the the Debian standards) and
coordination (to define relationships and dependencies with other packages) make is, in many cases,
quite complex.

The work performed by the Debian project is similar that by any other distribution producer:
software integration. However, in addition to the adaptation and packaging work, Debian developers
are responsible for the maintenance of the Internet infrastructure of services for the project (web site,
on-line archives, bug management systems, mailing lists, support and development, etc.), for several
translation and internationalization projects, for the development of several Debian-specific tools and,
in general, for any other element that makes the Debian distribution possible.

Debian is also well-known for following a strict packaging and versioning policy, with the aim
of improving quality [DebianPol]. As a consequence of this policy, three different “flavors” of De-
bian exist: stable, unstable and testing (yet another one exists: Debian experimental, which will be
described below). As the name suggests, the stable version is targeted to systems and people looking
for high stability. Its software has to pass a freezing period in which only critical errors are corrected.
The rule is that when a stable version is released it should not contain known critical bugs. On the
other hand, because of the freezing period, stable versions usually do not include the most recent soft-
ware versions. Those who want to use a version with more up-to-date software, can download testing,
which includes packages that are on the way of becoming stabilized, or even unstable version, more
inclined to fail but containing the latest of the latest on libre software applications and tools. The
fourth “flavor”, experimental, includes packages still in early stages of development.

Distributions are composed of packages, usually corresponding to applications or libraries (al-
though they can also contain documentation or even data). In Debian, there are two quite different
kinds of packages: source and binary. The former contains the sources of applications and libraries
that, once compiled and linked, may produce several binary packages. Binary packages are those
which users generally install in their computers. For example, Debian 3.0 consists of about 4,500
source packages, but has around 10,000 binary packages.

At the moment of this study, the stable version of Debian is Debian 3.0 (also known as “Woody”).
The next new release, still in test phase, has been announced for June 2005. Its release number will
be 3.1, and is codenamed “Sarge”. When this release becomes stable, a new testing release will start.
Its codename will be “Etch”. As a rule, unstable releases are always called “Sid”. In this paper we are
going to consider the stable versions of Debian since version 2.0, which was published in 1998, to the

3

present (in fact, to the foreseable future): Debian 2.0 (alias “Hamm”), Debian 2.1 (“Slink”), Debian
2.2 (“Potato”), Debian 3.0 (“Woody”) and, finally, Debian 3.1 (“Sarge”).

The codenames of the versions in Debian correspond to the main characters of the animated car-
toon film “Toy Story”, a tradition that started with version 1.1 when Bruce Perens, then leader of the
Debian project, worked for the company that was in charge of producing these movies. More details
on the history of Debian and the Debian distribution in general can be found in [DebianHistory].

3 Evolution of the number of Debian developers
From June 1999 onwards, the Debian project maintains a database [DBDebian] with data related to its
members. Some data can be retrieved publicly from it: name, nick or username, e-mail address and
PGP/GPG key. In addition, it includes information about the country of residence and the date when
joining the project (if later than the database creation, else June 20th 1999), except for the period
between June 2003 and June 2005, for which we have not found data about joining date. For this
paper, we have processed this information to obtain information about the evolution of the number
of developers and countries in which they reside. A similar study to the one presented here (dating
from 2001) can be found in [Robles2001], while for a more detailed study on how the participation
of Debian package maintainers has evolved in the last has been reported in [Robles2005].

In Figure 1 we can see the number of Debian developers at the moments of releasing a new stable
version. We have included in this picture data from [Lameter2002] for releases that go back to Debian
0.96R3 version in 1995. These numbers seem to be approximative.

Table 1 Number of Debian developers
Date Number of Debian developers Release Source
1995/08/01 60 Debian 0.96R3 [Lameter2002]
1996/06/01 90 Debian 1.1 [Lameter2002]
1996/12/01 120 Debian 1.2 [Lameter2002]
1997/07/01 200 Debian 1.3 [Lameter2002]
1998/07/01 400 Debian 2.0 [Lameter2002]
1999/06/21 413 Debian 2.1 [DBDebian]
2000/08/15 448 Debian 2.2 [DBDebian]
2002/07/19 892 Debian 3.0 [DBDebian]
2005/05/28 1380 Debian 3.1 prerelease [DBDebian]

Between versions 2.1 and 2.2 a small growth can be observed. It is clearly increased in the period
between Debian 2.2 and Debian 3.0: in two years the number of developers doubles. The last row
corresponds to the number of developers in the Debian database at the moment of this study (May
2005). We can see how the Debian project continues its growth at a good rate, although not as firmly
as in the period between Debian 2.2 and Debian 3.1.

We have included a picture in Figure 1 where we can see the incoming figures per week. As
stated before, we only count on data from June 21st 1999 to June 2003. The first and most surpris-
ing fact is to observe a period from June 1999 (or perhaps before, since we do not have previous
data) to March 2000 when no new developers were admitted. This situation can be explained by
a change in the policy for accepting new developers. It seems that there were some members who

4

entered Debian without knowing, understanding or agreeing with the philosophical lines of Debian
[DebianSocialContract], and some discussions became unbearable. Then, the members of the project
decided that a mechanism to avoid such cases in the future had to be set up. Until that mechanism
was established, no more developers were admitted.

Once the admission process reopened, the number of Debian developers grew without stop and
at a good rate during the rest of the year 2000 and 2001, as we can see from the figure. We can find
the peak of incorporations with 26 incorporations in one week in January 2001. From mid-2002 the
incorporations seem to slow down. On the other hand, it seems that new developers entered in groups
from mid-2002 onwards, and not continuously. This is possibly caused by the fact that the database
is updated periodically and not every time a new developer enters the project.

Figure 1 Number of Debian developers when releasing stable versions. The figure on the left hand
side shows the number of developers in the dates where a new stable version was released. Data from
[Lameter2002] has been included for releases before June 1999. The figure on the right shows the
number of new developers that enter the project in time since June 1999.

300

500

700

900

1100

1300

1500

J
1998

FMAMJJASONDJ
1999

FMAMJJASONDJ
2000

FMAMJJASONDJ
2001

FMAMJJASONDJ
2002

FMAMJJASONDJ
2003

FMAMJJASONDJ
2004

FMAMJJASONDJ
2005

FMAMJJASONDJ
2006

(a) Number of Debian developers when releasing stable ver-
sions

0

5

10

15

20

25

30

35

J
1999

A SOND J
2000

FMAM J J A SOND J
2001

FMAM J J A SOND J
2002

FMAM J J A SOND J
2003

FMAM J

(b) New developers that enter the Debian project

Table 2 shows the top 11 countries according to the number of residential Debian developers for
the last 5 years. 36 other countries have at least one developer. We can observe a trend toward
the decentralization of the project. Considering that the first steps of Debian took place in America
(particularly in the United States and Canada), we can see that during the last four years the project
has grown significantly in the European region. The United States -the country that contributes most
in number of developers- has an average growth rate that is inferior to the mean, while most countries
have at least doubled the number of developers in the last 5 years, being France the most significant
case with a multiplicative factor of five.

However, the decentralization seems to be limited to some regions, since the incorporation of
developers residing in South America, Africa and Asian countries (with the exception of Japan and
Korea, which are well represented) is testimonial. In June 2003, we can see in the Debian devel-
oper database two developers living in Egypt, China and India and only one in Mexico, Turkey and
Colombia.

Table 3 shows a more precise distribution of the Debian developers: the cities with larger num-
ber of Debian developers. This data has been obtained by means of the geographical position that
developers voluntarily entered for a survey, in December 2003.

5

Table 2 Top countries in number of Debian developers.

Country 1999.07.01 2000.07.01 2001.07.01 2002.07.01 2003.06.20 2005.05.28
United States 162 169 256 278 297 319
Germany 54 58 101 121 136 158
United Kingdom 34 34 55 63 75 84
Australia 23 26 41 49 52 55
France 11 11 24 44 51 64
Canada 20 22 41 47 49 55
Spain 10 11 25 31 34 38
Japan 15 15 27 33 33 36
Italy 9 9 22 26 31 38
The Netherlands 14 14 27 29 29 34
Sweden 13 13 20 24 27 29

Table 3 Top cities in number of Debian developers.
Rank City Country Developers
1. Paris France 15
1. Cambridge United Kingdom 15
3. Madrid Spain 13
4. Stuttgart Germany 10
5. Berlin Germany 9
5. Munich Germany 9
5. Tokyo Japan 9
5. Seattle United States 9
9. Vienna Austria 8
9. Sidney Australia 8
9. Montreal Canada 8
9. Budapest Hungary 8

4 Source code study: introduction and methodology

The methodology that we have used for the analysis of the stable versions of Debian is simple. To
begin with, all the packages of the studied versions were downloaded. For each package the number
of source lines of code was counted, and the programming language(s) in which the code is written
were recognized.

The counting has been performed using SLOCCount [SLOCCount]. SLOCCount takes as input
a directory where the sources are stored, identifies (by means of a series of heuristics) the files which
contain source code, recognizes for each of them (also by means of heuristics) the programming lan-
guage, and finally counts the number of source lines of code they contain. SLOCCount counts SLOCs
(physical lines of source code), defined as “a line that finishes in a mark of new line or a mark of end
of file, and that contains at least a character that is not a blank space nor commentary”. Therefore,
SLOCS are parsed differently for different languages, which forces to the stage on language identi-
fication. SLOCs is one of the common metrics to compare software systems. There are some well

6

known effort estimation and optimal timing methods (such as COCOMO) that use SLOCs as input
(as will be shown later, when those methods are presented in this paper). The acronym SLOC and its
derivatives, KSLOC (1,000 SLOC) and MSLOC (1,000,000 SLOC), are common, and we use them
in this paper.

SLOCCount also identifies identical files (by using MD5 hashes), and includes heuristics to detect
(and avoid counting) automatically generated code. These mechanisms are helpful when analyzing
the code, but have some deficiencies. For instance, finding almost identical files with slight modifica-
tions (for instance, the automatic identifier included for the CVS) using such hashes is definitely not
effective. In the second case, heuristics only take care of well-known and/or common cases, but do
not detect all of them, or others that may appear in future.

The results of the SLOCCount analysis are transformed by a collection of scripts into an XML
file which is later used for visualization, manipulation and transformations into other formats. Among
the most interesting transformations, we can insert the data into a relational database, by using SQL
commands. Then, with a simple web interface anyone can have access to raw data and other more
elaborated visualization forms that facilitate a first analysis (graphs, maps, etc.) ([DebianCounting]).

A more detailed description of the methodology used, as well as a discussion on the main con-
straints, can be found in [GBarahona2001] and [Amor2004].

5 The size of Debian
The number of MSLOC (millions of physical lines of source code) and of source packages for the
analyzed versions of Debian is shown in figure Figure 2. Debian 2.0 included 1,096 source packages,
with a total of more than 25 MSLOC. The next stable version of Debian, 2.1 (published around nine
months later) had more than 37 MSLOC and 1,551 source packages. Debian 2.2 (released 15 months
after Debian 2.1) summed up around 59 MSLOC in 2,611 packages. The last stable version at the
moment of writing this paper, Debian 3.0 (published two years after Debian 2.2), grouped 4,579
packages of source code with almost 105 MSLOC. Almost three years later Debian 3.1 is about to be
released, with 8,633 packages and about 230 MSLOC.

Figure 2 Size, in MSLOC, and number of packages for the versions in study. In both graphics of this
figure, the studied versions are spaced in time along the X axis according to their release date. On
the left we can see the number of MSLOC that includes each version, while the right graph shows the
evolution of the number of packages.

0

50

100

150

200

250

300

J
1998

FMAMJJASONDJ
1999

FMAMJJASONDJ
2000

FMAMJJASONDJ
2001

FMAMJJASONDJ
2002

FMAMJJASONDJ
2003

FMAMJJASONDJ
2004

FMAMJJASONDJ
2005

(a) MSLOC for each version

0

2000

4000

6000

8000

10000

J
1998

FMAMJJASONDJ
1999

FMAMJJASONDJ
2000

FMAMJJASONDJ
2001

FMAMJJASONDJ
2002

FMAMJJASONDJ
2003

FMAMJJASONDJ
2004

FMAMJJASONDJ
2005

(b) Number of packages for each version

7

Table 4 Size of the Debian distributions under study

Version Release date Source packages Size (MSLOC) Mean package size (SLOC)
Debian 2.0 July 1998 1,096 25 23,050
Debian 2.1 March 1999 1,551 37 23,910
Debian 2.2 August 2000 2,611 59 22,650
Debian 3.0 July 2002 4,579 105 22,860
Debian 3.1 June 2005 (estimated) 8,633 229 26,584

These figures show how Debian total size (both in MSLOC and in number of packages) is doubling
every two-three years. This is an interesting finding, which implies that, for instance between releases
3.0 and 3.1 the Debian project has included as much code as in all its previous history. In addition,
having into account that Debian includes an important share of the mature and usable libre software
ported to GNU/Linux, we can extrapolate that this kind of software is growing at the same rate.

6 Packages
Graphs representing the distribution of package sizes in the different versions of Debian are shown in
Figure 3 and Figure 4. It is possible to observe that there is a small number of large packages (with
more than 100,000 lines of code) and that the size of these packages tends to increase with time, as
one of Lehman’s law of software evolution states [Lehman1997]. Nevertheless, it seems surprising
that despite the growth that has undergone Debian in time, the graph does not show large variations.
But certainly, what is still more interesting is the fact that the mean size for the packages included
in Debian is surprisingly regular (around 23,000 SLOC for Debian 2.0, 2.1, 2.2, 3.0 and 3.1). With
the data currently available it is difficult to give a forceful explanation of this fact, but we can suggest
some thoughts: perhaps the “ecosystem” in Debian is so rich that while many packages grow in size,
smaller ones are included causing that the average stays approximately constant over time.

It is also interesting to follow the evolution of the largest packages included in each of the stable
versions of Debian. Many of these packages correspond to significant applications, well-known and
popular, which have been documented in detail in several scientific papers. From the study of these
packages we can infer some information about the nature of the Debian distributions.

There is a lot of movement in the list of the top ten packages in size, from release to release.
Almost no package remains in the top-ten of Debian 3.1 from the top-ten of Debian 2.0, about sever
years earlier. Some of the “new ones” have been included in later versions (as it is the case for the
Mozilla navigator), whereas in the case of others they are compositions from some smaller packages
(this is the case for mingw32, a C/C++ cross compiler for Win32).

On the other hand, there is a clear trend for the inferior limit of the top ten packages to increase in
size with time: whereas in Debian 2.0 we can see how GCC with 460,000 SLOC was located in the
tenth position, the tenth largest package for Debian 3.1, kfreebsd5-source (the kernel source code of
FreeBSD for building a Debian GNU/kFreeBSD distribution) consisted on more than 1,600,000 lines
of code.

But top packages in size do not only tend to have more source code, they also show a trend to
have larger source code files. While the average in SLOC per file is in a rank between 352 and 359 for
packages among the top ten, the average for all the packages in the same versions lies between 228
and 243 of source code lines per file. It exists, nevertheless, a big variance among the top packages.

8

Figure 3 Package sizes for Debian distributions. Packages are ordered by their size along the X axis,
while the counts in SLOCs are represented along the Y axis (in logarithmic scale).

0 200 400 600 800 1000 1200

500
1500
3500
7500

15500
32000
65500

134000
274000
560000

1.144e+06

(a) Debian 2.0

0 200 400 600 800 1000 1200 1400 1600

500
1500
3500
7500

15500
32000
65500

134000
274000
560000

1.144e+06

(b) Debian 2.1

0 500 1000 1500 2000 2500 3000

500
1500
3500
7500

16000
34000
72000

152000
320500
676000

1.425e+06

(c) Debian 2.2

0 1000 2000 3000 4000 5000

500
1500
3500
7500

16000
34000
72500

154500
328500
698000

1.483e+06
3.1505e+06

(d) Debian 3.0

Figure 4 Package sizes for Debian 3.1. Packages are ordered by their size along the X axis, while the
counts in SLOCs are represented along the Y axis (in logarithmic scale).

 5e+06

 800000

 154500

 34000

 7500
 3500
 1500

 500

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

We have a range going from the 138 SLOC per file in version 1.1.2 of egcs (a derivative of the GNU
GCC compiler) to the 806 SLOC per file in bigloo (a system for Scheme compilation) in its version
2.4b.

Regarding the application domain, there are no significant differences in the top packages. We can
find at the top of this classification system tools (compilers, debuggers...), specific-purpose libraries
and end-user application as a web navigator (Mozilla) or office suite (OpenOffice.org). The kernel
of the operating system, Linux, packed as kernel-source, is present in the top-ten of all releases.
From the evolution of the top packages in size for the latest versions, we can infer a certain shift
from low-level programmer-oriented software (kernels, compilers, debuggers...) to end-user targeted
applications (web browsers and office suites), which may mirror the expansion of GNU/Linux systems
from administrators and computer scientists to “regular” end users.

9

Table 5 Top 10 packages in size for Debian 2.0.
Rank Package name Version SLOC files SLOC/file
1. xfree86 3.3.2.3 1,189,621 4,100 290.15
2. xemacs20 20.4 777,350 1,794 433.31
3. egcs 1.0.3a 705,802 4,437 159.07
4. gnat 3.10p 599,311 1,939 309.08
5. kernel-source 2.0.34 572,855 1,827 313.55
6. gdb 4.17 569,865 1,845 308.87
7. emacs20 20.2 557,285 1,061 525.25
8. lapack 2.0.1 395,011 2,387 165.48
9. binutils 2.9.1 392,538 1,105 355.24
10. gcc 2.7.2.3 351,580 753 466.91

Table 6 Top 10 packages in size for Debian 2.1.
Rank Package name Version SLOC files SLOC/file
1. mozilla M18 1,269,186 4,981 254.81
2. xfree86 3.3.2.3a 1,196,989 4,153 288.22
3. kernel-source 2.2.1 1,137,796 3,927 289.74
4. prc-tools 0.5.0r 103,5230 3,025 342.22
5. egcs 1.1.2 846,610 6,106 138.65
6. xemacs20 20.4 777,976 1,796 433.17
7. emacs20 20.5a 630,052 1,116 564.56
8. gnat 3.10p 599,311 1,939 309.08
9. gdb 4.17 582,834 1,862 313.02
10. ncbi-tools6 6.0 554,949 951 583.54

6.1 Package versions

It has already been shown how, throughout the latest stable releases, Debian has changed a lot, grow-
ing both in number of packages and in number of SLOC. Now we will focus on the opposite direction:
matters that have not changed. We have already shown how there are packages in the list of the top
packages in size that have been added in more recent stable versions of Debian. Other packages may
have “fallen” and do not appear anymore, while still some others remain invariant in time. In this
section we will discuss these later two groups.

Although it can seem surprising, out of the 1096 packages included in Debian 2.0 only about 800
appear in the latest version of Debian considered in this study. This means that about 25% of the
packages have disappeared from Debian in six years. The number of packages of the 3.0 version that
are still included in 3.1 is 3,848 out of 4,578 which gives us a similar percentage of ”disappeared”
packages.

Table 10, Table 11, Table 12, Table 13 and Table 14 show the packages that the different stable
versions have in common. We assume that two versions have a package in common if it is included in
both, independently of the version number of the package. Each table displays in its second column
the number of packages in common that a version of Debian has with the other versions. To facilitate
the comparison in relative and absolute terms, the same version of Debian that is compared is itself

10

Table 7 Top 10 packages in size for Debian 2.2.
Rank Package name Version SLOC files SLOC/file
1. mozilla M18 1,940,167 9,315 208.28
2. kernel-source 2.2.19.1 1,731,335 5,082 340.68
3. pm3 1.1.13 1,649,480 10,260 160.77
4. xfree86 3.3.6 1,256,423 4,351 288.77
5. prc-tools 0.5.0r 1,035,125 3,023 342.42
6. oskit 0.97.20000202 851,659 5,043 168.88
7. gdb 4.18.19990928 797,735 2,428 328.56
8. gnat 3.12p 678,700 2,036 333.35
9. emacs20 20.7 63,0424 1,115 565.4
10. ncbi-tools6 6.0.2 591,987 988 599.18

Table 8 Top 10 packages in size for Debian 3.0.
Rank Package name Version SLOC files SLOC/file
1. kernel-source 2.4.18 2,574,266 8,527 301.9
2. mozilla 1.0.0 2,362,285 11,095 212.91
3. xfree86 4.1.0 1,927,810 6,493 296.91
4. pm3 1.1.15 1,501,446 7,382 203.39
5. mingw32 2.95.3.7 1,291,194 6,840 188.77
6. bigloo 2.4b 1,064,509 1,320 806.45
7. gdb 5.2.cvs20020401 986,101 2,767 356.38
8. crash 3.3 969,036 2,740 353.66
9. oskit 0.97.20020317 921,194 5,584 164.97
10. ncbi-tools6 6.1.20011220a 830,659 1,178 705.14

included. As it is logical, Debian 2.0 will have in common with itself 1,096 (all) source packages.

On the other hand, we have to consider that distributions contain applications and libraries that
evolve over time. This can be inferred from the fact that the own version number of packages evolve.
For example, the Linux sources comes generally in a package called kernel-source, as we have seen
before. In each version of Debian, the version number of kernel-source changes, so we can state
that Linux has evolved and that these changes and improvements have been introduced in Debian.
Thus this does not have to be the case for all packages. In the same way that previously we were
interested in packages in common without mattering if the package version numbers changed, now
we are going to consider those whose package version number does not vary among distributions.
So, now we assume as a common package that with the same package version, being included in two
different Debian versions. Again, we add the own Debian version being compared, and because of
that Debian 2.0 will have all of its packages (1,096) in common with itself.

The fact that Debian 3.1 includes 158 packages that have not evolved since Debian 2.0 is very
surprising, as it comes to say that 15% of the source packages included in Debian 2.0 have stayed
almost inalterable since they were released six years ago. As it is logical, on the other hand, the
number of packages with versions in common increases when the distributions are nearer in time.

11

Table 9 Top 10 packages in size for Debian 3.1.
Rank Package name Version SLOC files SLOC/file
1. openoffice.org 1.1.3 5,181,285 19,011 272.54
2. kernel-source-2.6.8 2.6.8 4,043,242 13,974 289.34
3. nvu 0.80 2,476,391 10,780 229.72
4. mozilla 2:1.7.3 2,437,724 10,713 227.55
5. gcc-3.4 3.4.3 2,422,056 22,992 105,34
6. xfs-xtt 1:1.4.1 2,326,623 7,081 328.57
7. xfree86 4.3.0 2,316,842 7,216 321,07
8. vnc4 4.0 2,055,178 6,790 302.68
9. insight 6.1+cvs.2004.08.11 1,690,058 4,063 415.96
10. kfreebsd5-source 5.3 1,630,452 4,968 328.19

Table 10 Packages and versions in common for Debian 2.0
Debian Ver-
sion

Common
packages

Common ver-
sions

SLOC of
common
versions

Files of com-
mon versions

SLOC of
common
packages

Debian 2.0 1,096 1,096 25,267,766 110,587 25,267,766
Debian 2.1 1,066 666 11,518,285 11,5126 26,515,690
Debian 2.2 973 367 3,538,329 86,810 19,388,048
Debian 3.0 754 221 1,863,799 70,326 15,888,347
Debian 3.1 813 158 1,271,377 15,296 15,594,976

7 Programming languages

As we have already commented in the section devoted to methodology, before counting the number of
SLOC, the programming language in which a file is written is identified. Thanks to this, we are able
to know the significance and the use of the different programming languages in Debian. The most
used language in all Debian versions is C, with shares ranging from 57% to 85%, and with a large
advantage over its immediate follower, C++. It can be observed, nevertheless, that the importance of
C is diminishing gradually, whereas some other programming languages are growing at a good rate.

For example, in Table 15 the evolution of the most significant languages (those that surpass 1%

Table 11 Packages and versions in common for Debian 2.1
Debian Ver-
sion

Common
packages

Common ver-
sions

SLOC of
common
versions

Files of com-
mon versions

SLOC of
common
packages

Debian 2.0 1,066 666 11,518,285 115,126 26,515,690
Debian 2.1 1,551 1,551 37,086,828 161,303 37,086,828
Debian 2.2 1,384 602 8,460,239 133,140 30,052,890
Debian 3.0 1,076 322 3,152,790 108,071 24,743,063
Debian 3.1 1,124 231 2,306,969 27,543 23,630,211

12

Table 12 Packages and versions in common for Debian 2.2
Debian Ver-
sion

Common
packages

Common ver-
sions

SLOC of
common
versions

Files of com-
mon versions

SLOC of
common
packages

Debian 2.0 973 367 3,538,329 86,810 19,388,048
Debian 2.1 1,384 602 8,460,239 133,140 30,052,890
Debian 2.2 2,610 2,610 59,138,348 257,724 59,138,348
Debian 3.0 1,921 771 8,356,302 186,508 42,938,562
Debian 3.1 1,946 508 4,992,308 60,525 36,584,110

Table 13 Packages and versions in common for Debian 3.0
Debian Ver-
sion

Common
packages

Common ver-
sions

SLOC of
common
versions

Files of com-
mon versions

SLOC of
common
packages

Debian 2.0 754 221 1,863,799 70,326 15,888,347
Debian 2.1 1,076 322 3,152,790 108,071 24,743,063
Debian 2.2 1,921 771 8,356,302 186,508 42,938,562
Debian 3.0 4,578 4,578 104,305,557 403,285 104,702,397
Debian 3.1 3,848 1,567 16,042,810 211,299 78,451,818

of code in Debian 3.1) is shown. Below the 1% border we can find a long list starting with PHP, Tcl,
Pascal, Ada, ObjC, ML, Yacc and some other languages.

There exist some programming languages that we could consider as minor languages but which
are found ate a strange high position in the classification given above. This is because although being
present in a reduced number of packages, these are quite large in size. That is the case of Ada, that
sums near to 500,000 SLOC in three packages: gnat (an Ada compiler), libgtkada2 (a binding to the
GTK library) and Asis (a system to manage sources in Ada) of a total of 1,401,000 SLOC that have
been identified as code written in that language in Debian 3.1. Another similar case is Lisp, that
counts, only for GNU Emacs and XEmacs, with more than 1,200,000 SLOC of around 7 MSLOC in
the whole distribution.

The pie-charts showing programming language shares expose a clear trend to the decline of C.
Something similar seems to happen to Lisp, that was the third most used language in Debian 2.0, but

Table 14 Packages and versions in common for Debian 3.1
Debian Ver-
sion

Common
packages

Common ver-
sions

SLOC of
common
versions

Files of com-
mon versions

SLOC of
common
packages

Debian 2.0 813 158 1,271,377 15,296 15,594,976
Debian 2.1 1,124 231 2,306,969 27,543 23,630,211
Debian 2.2 1,946 508 4,992,308 60,525 36,584,110
Debian 3.0 3,848 1,567 16,042,810 211,299 78,451,818
Debian 3.1 8,633 8,633 229,495,824 972,121 229,495,824

13

Table 15 Top programming languages in Debian.
LanguageKSLOC

De-
bian
2.0

Percent.
De-
bian
2.0

KSLOC
De-
bian
2.1

Percent.
De-
bian
2.1

KSLOC
De-
bian
2.2

Percent.
De-
bian
2.2

KSLOC
De-
bian
3.0

Percent.
De-
bian
3.0

KSLOC
De-
bian
3.1

Percent.
De-
bian
3.1

C 19,371 76.67% 27,773 74.89% 40,878 69.12% 66,550 63.08% 130,847 57,01%
C++ 1,557 6.16% 2,809 7.57% 5,978 10.11% 13,067 12.39% 38,601 16,82%
Shell 645 2.55% 1,151 3.10% 2,712 4.59% 8,636 8.19% 20,792 9.06%
Lisp 1,425 5.64% 1,892 5.10% 3,197 5.41% 4,087 3.87% 6,919 3.02%
Perl 425 1.68% 774 2.09% 1,395 2.36% 3,199 3.03% 6,416 2.80%
Python 122 0.48% 211 0.57% 349 0.59% 1,459 1.38% 4,129 1.80%
Java 22 0.09% 58 0.16% 183 0.31% 531 0.51% 3,679 1.60%
Fortran 494 1.96% 735 1.98% 1,182 1.99% 1,939 1.84% 2,724 1.19%

has become the fifth in Debian 3.1, and that foreseeably will continue backing down in the future.
On the other hand, the part of the pie corresponding to C++, shell and other programming languages
grows.

Figure 5 Pie with the distribution of source lines of code for the predominant languages in Debian

ansic

cpp

lisp

sh

other

(a) Debian 2.0

ansic

cpp

lisp

sh

other

(b) Debian 2.1

ansic

cpp

lisp

sh

other

(c) Debian 2.2

ansiccpp

sh

lisp

other

(d) Debian 3.0

ansic

cpp

sh

lisp

other

(e) Debian 3.1

Figure 7 provides the relative evolution of programming languages, giving a new perspective of
the growth in the last four stable Debian releases. We take as reference the Debian 2.0 release and
assume that the presence of each language in it is 100%, so that growth for a programming language
is shown relative to itself.

Previous pies showed that C is backing down as far as its relative importance is concerned. Here
we can observe that C has grown more than 300% throughout the four versions. But we can see

14

that scripting languages (shell, Python and Perl) have undergone an extraordinary growth, all of them
multiplying their presence by factors superior to seven, accompanied by C++. Languages that grow
a smaller quantity are the traditional, compiled ones (Fortran and Ada). This can give an idea of the
importance that interpreted languages have begun to have in the libre software world.

Figure 7 includes the most representative languages in Debian, but excludes Java and PHP, since
the growth of these two is enormous, partly because their presence in Debian 2.0 was testimonial,
partly because their popularity in the latest time is beyond doubt.

Figure 6 Evolution of the four most used languages in Debian

Debian2.0 Debian2.1 Debian2.2 Debian3.0 Debian3.1
0

5e+07

1e+08

1.5e+08

2e+08

C
C++
Lisp
Shell

Figure 7 Relative growth of some programming languages in Debian

 0

 5

 10

 15

 20

 25

 30

 35

Debian 3.1Debian 3.0Debian 2.2Debian 2.1Debian 2.0

R
el

at
iv

e
S

LO
C

 (S
LO

C
 in

 D
eb

ia
n

2.
0

=
1)

C
C++

LISP
Shell

FORTRAN
Perl
Ada

Python

7.1 File sizes
Some of the most important programming languages have spectacular increases in their use, but,
interestingly, the mean file sizes, for files in each of those languages, remain basically constant (see
Table 16). Thus, for C the average length lies around 260 to 280 SLOC per file, whereas in C++ this
value is located in an interval going from 140 to 185. We can find the exception to this rule in the shell
language, that triples its mean size. This is because the shell language is very singular: almost all the
packages include something in shell for their installation, configuration or as “glue”. It is probable
that this type of scripts get more complex in time.

15

It is also quote peculiar to learn that structured languages usually have larger average file lengths
than object-oriented languages. Thus the files in C (or Yacc) usually have higher sizes, in average,
than those in C++. This makes us think that the modularity of programming languages is also reflected
in the mean file size.

Table 16 Mean file size for some programming languages. Average computed for all programming
languages (not only those shown)

Language Debian 2.0 Debian 2.1 Debian 2.2 Debian 3.0 Debian 3.1
C 262.88 268.42 268.64 283.33 283.43
C++ 142.5 158.62 169.22 184.22 186.09
Lisp 394.82 393.99 394.19 383.60 350.76
shell 98.65 116.06 163.66 288.75 340.46
Yacc 789.43 743.79 762.24 619.30 607.17
Average 228.49 229.92 229.46 243.35 236.08

8 Effort and time estimation
The COCOMO model [Boehm1981] provides an estimation of the human and monetary effort needed
to generate software of a given size. It takes as input metric the number of source lines of code. CO-
COMO is a model thought for the “classical” software generation processes (V or waterfall develop-
ment model) and for large projects, so that the results that it offers when applied to Debian packages
should be considered with caution. In any case, the results may give us an idea of the order of mag-
nitude of the costs that creating Debian would represent, showing the necessary optimal efforts, if a
proprietary development model had been used. In other words, COCOMO can be a good estimator
for the substition cost of Debian.

All in all, the most astonishing result that COCOMO offers when applied to Debian is the cost
estimation. Some words should be said in order to clarify the concept. In this estimation two special
factors are considered: the average developer salary and the factor of “overhead”. In the calculation
of the cost estimation, the average wage for a full-time system programmer has been taken from the
year 2000 salary survey [ComWorld2000]. “Overhead” is the overhead cost that any company has
to assume independently from the programmers’ salaries so that the product hits the streets. Secre-
taries, marketing team and so on have to be added to the costs of photocopies, electricity, equipment,
hardware, etc. and that all is computed in the “overhead” factor (which for our calculations has been
supposed to be 2,4). In summary, the final cost calculated by COCOMO is the total cost that a com-
pany would have to confront to create a software of the specified size and not simply the money that
programmers would perceive to make the software. Once this is understood, cost calculations seem
less bulky.

In Table 17 we can observe the results of applying the basic COCOMO model to the different
Debian stable versions. The results have been obtained by means of the separate calculation of the
cost that each package would suppose and has been summed up to give the global cost. It should be
noted that as COCOMO output is a non-linear, the sum of the separate cost for packages is not equal
to the cost of considering everything as one single project. The first result would give us the inferior
effort limit, since the integration tasks are not considered. On the contrary, the second case offers an

16

upper limit, since savings from having independent projects are not considered. In [DebianCounting]
both figures can be obtained for their comparison. As stated before, for our current goals it is enough
with an estimation of the order of magnitude and therefore only the former cost appears.

Table 17 Effort, time and development cost estimation for each Debian version.
Version MSLOC Effort (man-years) Time (years) Cost (Mill USD)
Debian 2.0 25 6,360 4.93 860
Debian 2.1 37 9,425 4.99 1,275
Debian 2.2 59 14,950 6.04 2,020
Debian 3.0 105 26,835 6.81 3,625
Debian 3.1 229 59,537 8,82 8,042

9 Comparison with other GNU/Linux distributions
There exist a similar study (in which the preliminary research that has lead to this paper, several years
later, was inspired) with Red Hat as the studied distribution [Wheeler2000], [GBarahona2004]. Red
Hat can be considered as the canonical distribution among the commercial ones. It has a very different
strategy and philosophy than the Debian project has. In any case, Red Hat perfectly serves for our
purposes of comparison. We should not forget that the Red Hat Package Manager (RPM) is used by
a large majority of distributions, followed (at a long distance) by the one used in Debian (known as
deb) [DistroWatch]. We are, therefore, probably comparing the two most significant GNU/Linux dis-
tributions of the libre software world. Some of the presented Red Hat information has been extracted
from [Wheeler2000] and [Wheeler2001]. The rest has been added by the authors in order to obtain a
more complete picture.

In 2003, Red Hat decided to transfer their freely available distribution to a community supported
project, called Fedora. So, we have considered Fedora as a continuation of Red Hat Linux distri-
bution; however we think it needs to be studied separately because we can imagine that growth of
community supported distributions must be faster than traditional enterprise distributions as Red Hat
did. However, in this paper Fedora and Red Hat distributions will be considered as same yet. In the
future, we will study the evolution of Fedora distributions and will be compared with RedHat and
other.

We can find the main organizational difference with Debian in the fact that there is a company be-
hind Red Hat. This means that this company will have a determined number of dedicated employees
that integrate all the software in an homogeneous way in order to facilitate its installation, configu-
ration and update. In other words, while in Debian the packages included in the distribution depend
on the presence of voluntary collaborators who manage to pack them, in Red Hat certain economic
calculations have to be made to see the effort that supposes a new distribution and if that is affordable
for the company’s staff.

These divergences in conception result in a series of differences between Red Hat and Debian that
we can analyze and compare. One of the main differences is the fact that the number of packages in
Red Hat is much more small than contemporary Debian versions. Thus, Debian 2.2 doubles Red Hat
7.1 in size, although its release happened some months later.

On the other hand, Red Hat distributions usually include most recent versions of software, whereas
in Debian, freezing intervals before the release have as an effect that stable versions do not include

17

Table 18 Comparison with other GNU/Linux distributions.

Name Release date MSLOC Effort (man-years) Time (years) Cost (Mill USD)
Red Hat 5.2 April 1998 12 3,216 4.93 434
Red Hat 6.0 April 1999 15 3,951 5.08 534
Red Hat 6.2 March 2000 17 4,550 5,45 615
Debian 2.0 July 1998 25 6,360 4.93 860
Red Hat 7.1 April 2001 30 7,950 6.53 1,075
Debian 2.1 March 1999 37 9,425 4.99 1,275
Red Hat 8.0 September 2002 50 13,315 7.35 1,800
Debian 2.2 August 2000 59 14,950 6.04 2,020
Debian 3.0 July 2002 105 26,835 6.81 3,625
Redhat 9.0 March 2003 53 14,092 7.43 1,904
Fedora Core 2 May 2004 67 17,961 7.97 2,426
Fedora Core 4 (pre.) May 2005 76 20,782 10.18 2,807
Debian 3.1 June 2005 (est.) 229 59,537 8.82 8,043

the latest of the latest. This can be easily demonstrated by studying the package versions included in
Red Hat and Debian. For example, as we can see in [GBarahona2004], many packages in Red Hat
6.2 and Debian 2.2 have identical versions even though Debian 2.2 was published five months later.
In some cases, Debian 2.2 even includes older versions than those that could be obtained in Red Hat
6.2.

Another remarkable detail is that Red Hat seems to have lower interest in small packages, as it
can be seen from figure Figure 8. As a result of this, the number of SLOC per package grows in time,
whereas (as we already showed) in Debian this value kept approximately constant.

Figure 8 Package sizes for Red Hat distributions. Packages are ordered by size along the X axis. the
number of SLOCs for each package is represented in logarithmic scale in the vertical axis.

0 100 200 300 400 500

500
1500
3500
7500

15500
32000
66000

136000
279500
574500

1.1805e+06

(a) Red Hat 6.2

0 100 200 300 400 500 600 700

500
1500
3500
7500

16000
34000
72000

152000
320500
676000

1.425e+06

(b) Red Hat 7.1

For a more detailed comparison of the Debian and Red Hat versions we refer the reader to
[GBarahona2004].

10 Comparison with other operating systems and applications
If comparisons are always difficult, those of libre software with proprietary one are more. All this
study on Debian has been possible because of its condition as libre software. The access to the code

18

(and many other information that has been exposed in this article) is essential to study thoroughly the
different versions in number of lines, packages, programming languages... But the advantages of libre
software (and, therefore, of libre software engineering, see [GBarahona2003b]) go further, because in
addition they offer the possibility of being reviewed by third parties that could be research groups or
just people interested in the topic.

In proprietary systems, in general, making a study as the one performed in this paper is a difficult,
if not impossible task. In fact, the numbers that will be offered below have their sources mostly in
the own companies that are behind the software development, so we cannot guarantee their veracity.
In many cases we do not even know if the figures being offered correspond to physical source lines
of code (SLOC) as we have been doing throughout this article or if they also include blank lines and
comments. We do not know either exactly what software they consider in their studies. So, for some
versions of Microsoft Windows we are not able to know if the Microsoft Office suite is included or
not.

In any case, we believe that including this comparative is relevant, since it helps to locate the
different Debian versions within a broader panorama. What seems to be beyond any doubt is that
Debian and Red Hat (specially Debian) are among the largest coordinated software systems ever built
up.

The numbers cited in Table 19 proceed from [Lucovsky2000] for Windows 2000, [McGraw2003]
for the rest of sizes of Windows systems, [SunPressRelease] for StarOffice 5.2 and [Schneier2000]
for the rest of systems.

Table 19 Comparison with proprietary systems
System Release Date “Lines of Code”
Microsoft Windows 3.1 April 1992 3,000,000
Microsoft NT 1995 4,000,000
SUN Solaris 7 October 1998 7,500,000
SUN StarOffice 5.2 June 2000 7,600,000
Microsoft Windows 95 August 1995 15,000,000
Windows NT 4.0 July 1996 16,000,000
Microsoft Windows 98 1999 18,000,000
Microsoft NT 5.0 1995 4,000,000
Debian 2.0 July 1998 25,000,000
Microsoft Windows 2000 February 2000 29,000,000
Debian 2.1 March 1999 37,000,000
Microsoft XP 2002 40,000,000
Debian 2.2 August 2000 55,000,000
Debian 3.0 July 2002 105,000,000
Debian 3.1 June 2005 (est.) 229,000,000

11 Conclusions
In this paper we have shown the results of studying in depth the stable versions of Debian, from
2.0 on. We have shown the evolution of physical source lines of code, the number and size of the

19

packages, and the share of programming languages. All this source code has been put together, and is
supported, by the number of voluntary developers with which Debian counts to create its distributions.
The different stable versions have been compared with the others as well as with other GNU/Linux
distributions, in our case Red Hat, and with large proprietary systems.

Among the most important finding that have emerged, we encounter that the stable versions seem
approximately to double in number of source lines of code and packages every two years, although,
some slow down is observed for the latest period studied, from 3.0 to 3.1. We feel that this evolution
can only be maintained if more voluntary developers enter the Debian project in the near future. That
is, at least, what can be concluded from the fact that, until now, mean package size has remained
approximately constant, so that the number of packages grows linearly with the number of lines of
code. If the number of developers in Debian does not grow in those proportions, the number of
packages that a developer will have to maintain will be too high.

The size of the upcoming version of Debian (3.1) makes us think that we are in front of one of
the largest software collections in the history of humanity, if not the largest. In order to create their
229 MSLOC, according to the COCOMO model, 60,000 person-years would be necessary and the
cost would go up to around the 8,000 million dollars. None of the other systems with which we have
compared Debian (Red Hat, Solaris, Windows, etc.) can compete currently in size with Debian.

The top applications in size contained in Debian consist predominantly on low level applications
(kernel, development software, specific-purpose libraries...), although in recent releases we have the
inclusion of end-user applications, such as Mozilla and OpenOffice.org. So, there is a tendency to
grow importance of desktop users versus more technical users.

As far as the programming languages are concerned, C is the most used language, although it
gradually is losing weight. The scripting languages, C++ and Java are those that seem to have a higher
growth in the following versions, whereas the traditional compiled languages have even inferior rates
of growth than C.

To conclude, it is important to remark that we have been offering a relatively small amount of
measurements and some estimations. Nevertheless, we consider that they are enough to draw some
conclusions, to compare Debian with other systems and to make some predictions about Debian’s
future.

12 Acknowledgments
We thank Martin Michlmayr for his invaluable comments and suggestions on some of the data used for
this report, and David A. Wheeler for his marvelous SLOCCount tool. Of course, we also thank the
Debian project for offering us not only the opportunity of writing this paper, but mainly for devoting
their time to producing such a fine distribution.

References
[Amor2004] Measuring Woody: The size of Debian 3.0, Juan José Amor, Gregorio Robles,

and Jesús M. González-Barahona, Pending publication. Will be available at
<http://people.debian.org/∼jgb/debian-counting/> . 4

[Boehm1981] Software Engineering Economics, Barry W. Boehm, 1981, Prentice Hall. 8

20

http://people.debian.org/~jgb/debian-counting/

[ComWorld2000] Salary Survey 2000, Computer World, <http://www.
computerworld.com/cwi/careers/surveysandreports>
. 8

[DBDebian] Debian Developers Database, Debian Project, <http://db.debian.
org> . 3, 3

[DFSG] Debian Free Software Guidelines (part of the Debian Social Contract), De-
bian Project, <http://www.debian.org/social contract> . 2

[Debian22Ann] Debian GNU/Linux 2.2, the “Joel ’Espy’ Klecker” release, is officially
released, Debian Project, <http://www.debian.org/News/2000/
20000815> .

[Debian22Rel] Debian GNU/Linux 2.2 release information, Debian Project, <http://
www.debian.org/releases/2.2/> .

[DebianCounting] Debian Counting, Jesús M. González Barahona and Gregorio Robles,
<http://libresoft.urjc.es/debian-counting/> . 1, 4, 8

[DebianHistory] A Brief History of Debian, Debian Documentation Team, <http://www.
debian.org/doc/manuals/project-history/> . 2

[DebianPol] Debian Policy Manual, Debian Project, <http://www.debian.org/
doc/debian-policy/> . 2

[DebianSocialContract] Debian Social Contract, Debian Project, <http://www.debian.org/
social contract> . 2, 3

[DistroWatch] Linux Distributions - Facts and Figures, Ladislav Bodnar,
<http://www.distrowatch.com/stats.php?section=
packagemanagement> . 9

[GBarahona2001] Counting potatoes: The size of Debian 2.2, Jesús M. González-Barahona,
Miguel A. Ortuño-Pérez, Pedro de-las-Heras-Quirós, José Centeno-
González, and Vicente Matellán-Olivera, <http://upgrade-cepis.
org/issues/2001/6/up2-6Gonzalez.pdf> , Also available at
<http://people.debian.org/∼jgb/debian-counting/> . 4

[GBarahona2003b] Free Software Engineering: A Field to Explore, Jesús M. González-
Barahona and Gregorio Robles, <http://www.upgrade-cepis.
org/issues/2003/4/up4-4Gonzalez.pdf> . 1, 10

[GBarahona2004] Anatomy of two GNU/Linux distributions, Jesús M. González-Barahona,
Gregorio Robles, Miguel Ortuño-Pérez, Luis Rodero-Merino, José Centeno-
González, Vicente Matellán-Olivera, Eva Castro-Barbero, and Pedro de-las-
Heras-Quirós, Chapter in book ”Free/Open Source Software Development”
edited by Stefan Koch and published by Idea Group, Inc. . 9, 9, 9

21

http://www.computerworld.com/cwi/careers/surveysandreports
http://www.computerworld.com/cwi/careers/surveysandreports
http://db.debian.org
http://db.debian.org
http://www.debian.org/social_contract
http://www.debian.org/News/2000/20000815
http://www.debian.org/News/2000/20000815
http://www.debian.org/releases/2.2/
http://www.debian.org/releases/2.2/
http://libresoft.urjc.es/debian-counting/
http://www.debian.org/doc/manuals/project-history/
http://www.debian.org/doc/manuals/project-history/
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/
http://www.debian.org/social_contract
http://www.debian.org/social_contract
http://www.distrowatch.com/stats.php?section=packagemanagement
http://www.distrowatch.com/stats.php?section=packagemanagement
http://upgrade-cepis.org/issues/2001/6/up2-6Gonzalez.pdf
http://upgrade-cepis.org/issues/2001/6/up2-6Gonzalez.pdf
http://people.debian.org/~jgb/debian-counting/
http://www.upgrade-cepis.org/issues/2003/4/up4-4Gonzalez.pdf
http://www.upgrade-cepis.org/issues/2003/4/up4-4Gonzalez.pdf

[GodfreyTu2000] Evolution in Open Source Software: A Case Study, Michael W. God-
frey and Qiang Tu, August 3-4, 2000, 2000 International Conference
on Software Maintenance <http://plg.uwaterloo.ca/∼migod/
papers/icsm00.pdf> .

[Lameter2002] Debian GNU/Linux: The Past, The Present and The Future, Christoph Lame-
ter, Free Software Symposium 2002, Toky, Japan <http://u-os.org/
tokyo/> . 3, 3, 1

[Lehman1997] Metrics and laws of software evolution - the nineties view, M.M. Lehman, J.F.
Ramil, P.D. Wernick, and D.E. Perry, Proceedings of the Fourth International
Software Metrics Symposium . 6

[Libresoft] Libre Software Engineering, Libre Software Engineering Lab at the Univer-
sidad Rey Juan Carlos (Madrid, Spain), <http://libresoft.urjc.
es/> . 1

[Lucovsky2000] From NT OS/2 to Windows 2000 and Beyond - A Software-Engineering
Odyssey, Mark Lucovsky, 4th USENIX Windows Systems Sympo-
sium, <http://www.usenix.org/events/usenix-win2000/
invitedtalks/lucovsky html/> . 10

[McGraw2003] From the ground up: the DIMACS software security workshop, Gary Mc-
Graw, IEEE Security and Privacy. March/April 2003. Volume 1, Number 2.
pp. 59-66 . 10

[Michlmayr2003] Quality and the Reliance on Individuals in Free Software Projects, Mar-
tin Michlmayr and Benjamin Mako Hill, <http://opensource.ucc.
ie/icse2003/3rd-WS-on-OSS-Engineering.pdf> . 1

[Robles2001] WIDI - Who Is Doing It? A research on Libre Software developers, Gregorio
Robles, Henrik Scheider, Ingo Tretkowski, and Niels Weber, <http://
widi.berlios.de/paper/study.pdf> . 3

[Robles2005] Evolution of Volunteer Participation in Libre Software Projects: Evi-
dence from Debian, Gregorio Robles, Jesus M. Gonzalez-Barahona, and
Martin Michlmayr, <http://www.cyrius.com/publications/
robles barahona michlmayr-evolution participation.
html> . 3

[SLOCCount] SLOCCount, David A. Wheeler, <http://www.dwheeler.com/
sloccount/> . 4

[Schneier2000] Software Complexity and Security, Bruce Schneier, March 15th 2000,
Crypto-Gram Newsletter, <http://www.counterpane.com/
crypto-gram-0003.html> . 10

[SunPressRelease] Sun Microsystems Announces Availability of StarOffice(TM) Source Code
on OpenOffice.org, SUN Microsystems, <http://www.collab.net/
news/press/2000/openoffice live.html> . 10

22

http://plg.uwaterloo.ca/~migod/papers/icsm00.pdf
http://plg.uwaterloo.ca/~migod/papers/icsm00.pdf
http://u-os.org/tokyo/
http://u-os.org/tokyo/
http://libresoft.urjc.es/
http://libresoft.urjc.es/
http://www.usenix.org/events/usenix-win2000/invitedtalks/lucovsky_html/
http://www.usenix.org/events/usenix-win2000/invitedtalks/lucovsky_html/
http://opensource.ucc.ie/icse2003/3rd-WS-on-OSS-Engineering.pdf
http://opensource.ucc.ie/icse2003/3rd-WS-on-OSS-Engineering.pdf
http://widi.berlios.de/paper/study.pdf
http://widi.berlios.de/paper/study.pdf
http://www.cyrius.com/publications/robles_barahona_michlmayr-evolution_participation.html
http://www.cyrius.com/publications/robles_barahona_michlmayr-evolution_participation.html
http://www.cyrius.com/publications/robles_barahona_michlmayr-evolution_participation.html
http://www.dwheeler.com/sloccount/
http://www.dwheeler.com/sloccount/
http://www.counterpane.com/crypto-gram-0003.html
http://www.counterpane.com/crypto-gram-0003.html
http://www.collab.net/news/press/2000/openoffice_live.html
http://www.collab.net/news/press/2000/openoffice_live.html

[Wheeler2000] Estimating Linux’s Size, David A. Wheeler, <http://www.dwheeler.
com/sloc> . 9

[Wheeler2001] More Than a Gigabuck: Estimating GNU/Linux’s Size, David A. Wheeler,
<http://www.dwheeler.com/sloc> . 9

23

http://www.dwheeler.com/sloc
http://www.dwheeler.com/sloc
http://www.dwheeler.com/sloc

	1 Introduction
	2 About Debian
	3 Evolution of the number of Debian developers
	4 Source code study: introduction and methodology
	5 The size of Debian
	6 Packages
	6.1 Package versions

	7 Programming languages
	7.1 File sizes

	8 Effort and time estimation
	9 Comparison with other GNU/Linux distributions
	10 Comparison with other operating systems and applications
	11 Conclusions
	12 Acknowledgments

