
A Statistical Examination of the Evolution and Properties of Libre Software

Israel Herraiz

GSyC/Libresoft

Universidad Rey Juan Carlos, Spain

herraiz@gsyc.urjc.es

Abstract

How and why does software evolve? This question has

been under study since almost 40 years ago, and it is still

a subject of controversy. In the seventies, Meir M. Lehman

formulated the laws of software evolution, a first attempt to

characterize the dynamics of the evolution of software. With

the raise of the libre (free / open source) software develop-

ment phenomenon, some cases that do not fulfill those laws

have appeared. Are Lehman’s laws valid in the case of libre

software development? Is it possible to design an univer-

sal theory for software evolution? And if it is, how? This

thesis is a large-scale empirical and statistical approach to

analyze the properties and evolution of libre software, using

publicly available data sources, hence enabling repeatabil-

ity of the results and third parties verification, fundamental

aspects of any empirical study. The main results are that

a small subset of basic size metrics are enough to charac-

terize a software system, software systems are self-similar,

and software evolution is a short range correlated (short

memory) process.

1. Introduction

Software evolution was born as field of research 40 years

ago, and keeps being an intense matter of study. Meir

M. Lehman, the pioneer in software evolution studies, co-

edited a book in 1985 where the laws of software evolu-

tion were stated [8]. That set of laws has evolved over

the years to keep synchronized with newer software tech-

nologies and development methodologies, and many ex-

periences and case studies supporting them have been re-

ported [5].

However, these laws have faced some controversial stud-

ies that showed cases where the laws were not fulfilled [12].

The most recent of those cases are related to libre (free,

open source) software [1, 14]. The case of libre software de-

velopment is paradoxical if we assume the laws of software

evolution to be true. Libre software is usually developed in

communities distributed all over the world, communicating

through the Internet. In many cases, the members of the

development team have not even met in person. Those peo-

ple come from different cultures, speak different languages,

work in different time zones, do not write requirements but

take them as implicit, and yet they manage to deliver qual-

ity products. Another difference is that the laws of software

evolution assume the lifetime of a software project to be di-

vided in two clear and different sets: development and evo-

lution, while in libre software both development and evolu-

tion activities happen at the same time, and during the whole

lifetime of the project. Another hint about the in unsuitabil-

ity of the laws for the case of libre software is the recom-

mendation of Lehman about keeping the interval between

releases as long as possible so the growth rate is maintained

under a safe value [7], that is in direct conflict with the re-

lease early, release often principle [13] massively followed

by community-driven libre software projects, and proven to

be successful in practice.

This conflict is not surprising if we think of the dimen-

sion of the empirical studies which the laws rely on. The

first sets of laws were only based on seven case studies

(more details may be found in the dissertation [2]). Still

in the nineties, the lack of empirical basis for software evo-

lution was a subject of research [3].

This thesis derives from all the above points. The origi-

nal goal of Lehman was to obtain a theory for software evo-

lution, being the laws a first approach to such a theory, that

lacked the necessary empirical support to become a theory.

The search for a theory is a search for conserved quanti-

ties and invariant properties. Thanks to the availability of

thousands of open software repositories in the libre soft-

ware community, it is possible to search for those invariants

following a statistical approach and basing on a large set of

case studies.

Indeed, this approach was suggested by Lehman [6], but

was not possible at the time because of the difficulties to

access real data about software projects. Therefore the main

goal of this thesis is:

978-1-4244-4828-9/09/$25.00 2009 IEEE Proc. ICSM 2009, Edmonton, Canada

439

To study the evolution and properties of a suf-

ficiently large amount of libre software projects,

by means of empirical studies and using a statis-

tical approach, to determine whether or not some

commonalities do exist, that could be used to for-

mulate a universal theory of software evolution.

2. Data Sources

In this thesis, we have used three main data sources:

the set of packages of FreeBSD, change records of a large

amount of projects hosted in SourceForge.net, and the evo-

lution in size for three selected case studies.

The first dataset was obtained extracting the source code

of a sample of packages of FreeBSD (ports, in the termi-

nology of FreeBSD), a well known software distribution.

Ports contain different setup files that are able to retrieve

the source code needed to build the package directly from

the original upstream authors. This makes it possible to ob-

tain original upstream source code, without any patching

applied by the distributors. Besides source code, ports also

provide meta-information, like the domain of application,

allowing for more refined analysis. This dataset contained

source code belonging to 12, 010 software projects, with

more than a million files. Some of the analysis were done

only on C source code files. That subsample of C source

code files belonged to 6, 556 software projects, with nearly

half a million files.

The second dataset contained the record history of some

software projects hosted in SourceForge.net (SF.net), a pop-

ular hosting service for libre software. SF.net contains hun-

dreds of thousands of projects. However, many of them are

inactive projects. We selected projects with at least three de-

velopers, one year of active history and with a CVS reposi-

tory. This reduced the size of the sample to 3, 821 projects.

For all those projects, we retrieved the time series of daily

changes. This is, the daily number of changes for each

project.

Finally, the third dataset contained only three case stud-

ies (the FreeBSD and NetBSD kernels, and PostgreSQL, a

databases management system), that were used to fit some

predictive models, and to compare them. The predicted

parameter was size, measured in Source Lines of Code

(SLOC), or more precisely, the time series of the daily size

measured in SLOC. The fitting set was composed of more

than 10 years of history, and the test set was the last year of

history of the projects.

3. Research Questions

In this section, we show the different research questions

addressed in this thesis, each one in a subsection with the

following structure: research question, description of the

methodology, summary of results and implications of those

results.

3.1 First Question: Validity of the Laws

Are the laws of software evolution valid for the case of

libre software?

In this research question, wee tried to determine whether

or not the laws of software evolution are valid for the case

of libre software. This question has been raised some times

in the past. For instance, Godfrey and Tu [1] found that

Linux grows with a superlinear pattern, and therefore it does

not fulfill the laws of software evolution. Lehman argued

that Godfrey and Tu’s study was not comparable with other

studies because the metrics used in each study were differ-

ent [9]. In the study by Godfrey and Tu, size was measured

in SLOC, and Lehman always used number of source code

files (termed modules in his papers).

This question was addressed using the first dataset. For

all the source code files, we measured several size and com-

plexity metrics, and then correlated the measurements, to

determine whether or not they were independent. The cor-

relation was done only for C source code files.

The results of the correlation analysis show that SLOC

is highly correlated with all the rest of size and complexity

metrics, and therefore any study using number of files or

SLOC should report the same results, regardless of the size

metric used.

Therefore, all the conflicting cases that have been re-

ported in the literature [1, 14] are comparable to the clas-

sical studies by Lehman, and therefore they also are evi-

dences of the invalidity of the laws (at least for the case of

libre software).

3.2 Second Question: Metrics to Charac-
terize a Software Product

Which metrics should be used to characterize the evolu-

tion of a software product?

The result of the first question also answers this research

question: all the size and complexity metrics considered in

this thesis are highly correlated (at least, for the case of the

C programming language), and thus all the metrics are pro-

viding the same information. Among all the metrics, SLOC

is popular in the literature (which makes it easier to com-

pare against previous works), and there are tools to measure

it for a myriad of programming languages. Therefore, we

suggest to use SLOC to characterize a software product.

440

3.3 Third Question: Shape of the Statis-
tical Distribution of Size

What is the shape of the statistical distribution of soft-

ware size?

After measuring the size of all the source code files of the

first dataset, we estimated the density probability function

of software size. We repeated that estimation at different

levels of granularity: size of files in SLOC, size of software

projects in number of files, and size of domains of appli-

cations in number of projects (that fall in that domain of

application). We also repeated all measurements at differ-

ent levels (file, project, domain) in SLOC; for instance, size

of every project in number of SLOC (contrarily to number

of files like in the previous measurement). With all those

data, we estimated the density probability function for each

level, with all the size metrics.

The estimation of the density probability function

showed that the shape of that function corresponds to a dou-

ble Pareto distribution. This distribution has been found be-

fore in other areas [11], and even some dynamic models

have been proposed for those areas [10], which suggest that

those models might be adapted for the case of software evo-

lution.

This result has implications for a hypothetical theory of

software evolution. The shape of this distribution gives in-

formation about the kind of process that generates it [10].

Therefore, any theory of software evolution should repro-

duce this kind of distributions. In particular, physical mod-

els for evolution can be proposed based on the processes

that generate this kind of distributions.

3.4 Fourth Question: Self-Similarity

How does that shape change with the scale of the mea-

surements (using different entities, metrics and so forth)?

Interestingly, and linking with the third question, the

double Pareto distribution appears regardless of the metric

used, and regardless of the level of granularity. Thus, the

distribution of the size of all the files measured in SLOC

is a double Pareto. The distribution of the size of software

projects in number of files is also a double Pareto. And the

size of domains of application in number of projects is also

a double Pareto. This is an evidence of self-similarity in

software, which may be an explanation for the fast growth

of some libre software projects.

3.5 Fifth Question: Software Evolution
Dynamics

What kind of dynamics drive software evolution (short

range or long range correlated)?

One crucial aspect of a theory of software evolution is its

dynamics. A recent work by Wu found that libre software

evolution is driven by a self-organized criticality (SOC) dy-

namics [15, 16]. Among other implications, process that

can be explained by a SOC dynamics are long range corre-

lated.

The methodology is based on calculating the autocorre-

lation function plot of a time series. Depending on the shape

of that plot, we can determine if the time series corresponds

to a short range or a long range correlated process.

Using the sample of the daily time series of number of

changes for the 3, 821 projects extracted from SF.net, we

found that more than 80% of them were short range cor-

related process, suggesting that SOC may not be a good

model for software evolution.

From a practitioner’s point of view, this means that when

taking decisions about the next steps of a software project,

recent events have a greater impact in the future of the

project, and therefore should be given more importance that

events that took place time ago.

3.6 Sixth Question: Forecasting Software
Evolution

What is the best method to predict software evolution?

The fact that most of the projects in the sample ex-

tracted from SF.net are short range correlated processes (or

ARIMA processes in the time series terminology), can be

used to fit accurate models with the purpose of forecasting

software evolution.

That kind of models are statistical, and hence non-

explanatory. We can not find out why software evolves,

but at least can predict the evolution of some parameters

(like size) that might be useful from a management point of

view. Traditionally, regression models have been used for

this task [1, 14, 4].

Using the FreeBSD and NetBSD kernels, and the Post-

greSQL database management system, we predicted the last

year of history (the daily size) of those projects. The train-

ing set was composed of all the history of the projects, but

the last year. That last year was forecasted with regression

and ARIMA (time series analysis based) models, then the

results were compared against the actual data. The mean

squared relative error of the regression models was from 7%

to 17%. For the ARIMA models, from 1.5% to 4%. There-

fore, ARIMA models are much more accurate for forecast-

ing software evolution than regression models.

Again, from a practitioner’s point of view, this suggests

that regression is not always the best technique for software

evolution forecasting or modeling, and that more sophisti-

cated techniques like time series analysis should be used

instead.

441

4. Conclusions and Further Work

This thesis is a large empirical study of the evolution and

properties of libre software. All the data sources used for

this study are public. Moreover, all the tools, databases and

scripts used to make all the calculations have been made

available, so this study can be repeated and verified with

new case studies1. The goal of this thesis is to find com-

monalities within that large set of software, so they can be

used as a basis for an universal theory of software evolu-

tion. This has been a long pursued objective in the field of

software evolution during decades. Actually, this statistical

approach to this problem was proposed as early as 1974 by

Lehman [6]. Thanks to the availability of thousands of open

software repositories in the libre software world, it is now

possible for the first time in history to perform such a large

scale study, and more importantly, to make it repeatable and

verifiable by third parties. These are crucial requirements in

the quest for a theory of software evolution.

The results of this thesis have deep implications for such

a theory. First, they show that the laws of software evolution

have been invalidated in the case of libre software develop-

ment. Second, among the results there are some findings

that hold for a large amount of case studies (like the corre-

lations among metrics, or the self-similarity), which suggest

that those are universal properties of software.

From the practitioner’s point of view, this thesis shows

that, because of the statistical properties of the dynamics of

software evolution, the best methods to forecast the evolu-

tion of software projects is time series analysis, and that the

recent history of projects have a much deeper influence in

the next steps than remote events.

However, much further work is still needed before the

theory can be articulated. That software size is distributed

like a double Pareto needs a more careful study, and ex-

planatory (physical) models should be proposed based on

that fact. Other findings, like self-similarity, should also

serve as check points for a theory, because any explanatory

model should reproduce those properties.

5. Acknowledgements

This work was done with the support of the funding pro-

vided by the Comunidad de Madrid (the regional govern-

ment of Madrid) and the European Social Fund, under grant

number 01/FPI/0582/2005, and the FP6 funded FLOSS-

Metrics (contract IST-5-033982) and QUALOSS (contract

FP6-IST-5-033547) projects.

1See http://purl.org/net/who/iht/phd

References

[1] M. W. Godfrey and Q. Tu. Evolution in open source soft-

ware: A case study. In ICSM ’00: Proceedings of the Inter-

national Conference on Software Maintenance (ICSM’00),

pages 131–142, Washington, DC, USA, October 2000. IEEE

Computer Society.

[2] I. Herraiz. A statistical examination of the evolution and

properties of libre software. PhD thesis, Universidad Rey

Juan Carlos, 2008. http://purl.org/net/who/iht/phd.

[3] C. F. Kemerer and S. Slaughter. An empirical approach to

studying software evolution. IEEE Transactions on Software

Engineering, 25(4):493–509, 1999.

[4] S. Koch. Evolution of Open Source Software systems -

a large-scale investigation. In Proceedings of the Interna-

tional Conference on Open Source Systems, Genova, Italy,

July 2005.

[5] M. Lehman and J. Ramil. An overview of some lessons

learnt in FEAST. In Proceedings of the Workshop on Em-

pirical Studies of Software Maintenance, 2002.

[6] M. M. Lehman. Programs, Cities, Students: Limits to

Growth?, 1974. Inaugural lecture, Imperial College of Sci-

ence and Technology, University of London.

[7] M. M. Lehman. Laws of Program Evolution-Rules and

Tools for Programming Management. In Proceedings of In-

fotech State of the Art Conference, Why Software Projects

Fail, 1978.

[8] M. M. Lehman and L. A. Belady, editors. Program evolu-

tion. Processes of software change. Academic Press Profes-

sional, Inc., San Diego, CA, USA, 1985.

[9] M. M. Lehman, J. F. Ramil, and U. Sandler. An approach

to modelling long-term growth trends in software systems.

In Internation Conference on Software Maintenance, pages

219–228, Florence, Italy, 2001. IEEE Computer Society.

[10] M. Mitzenmacher. Dynamic models for file sizes and double

Pareto distributions. Internet Mathematics, 1(3):305–333,

2004.

[11] M. Mitzenmacher and B. Tworetzky. New models and meth-

ods for file size distributions. In Proceedings of the Annual

Allerton Conference on Communication Control and Com-

puting, pages 603–612, 2003.

[12] S. S. Pirzada. A statistical examination of the evolution of

the UNIX system. PhD thesis, Imperial College. University

of London., 1988.

[13] E. S. Raymond. The cathedral and the bazaar. First Monday,

3(3), March 1998.

http://www.firstmonday.dk/issues/issue3 3/raymond/.

[14] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, and I. Her-

raiz. Evolution and growth in large libre software projects.

In Proceedings of the International Workshop on Principles

in Software Evolution, pages 165–174, Lisbon, Portugal,

September 2005.

[15] J. Wu. Open Source Software evolution and its dynamics.

PhD thesis, University of Waterloo, 2006.

[16] J. Wu, R. Holt, and A. E. Hassan. Empirical evidence for

SOC dynamics in software evolution. In Proceedings of the

International Conference on Software Maintenance, pages

244–254. IEEE Computer Society, 2007.

442

